A Review of Point Cloud Semantic Segmentation

Ripe with possibilities offered by deep-learning techniques and useful in applications related to remote sensing, computer vision, and robotics, 3D point cloud semantic segmentation (PCSS) and point cloud segmentation (PCS) are attracting increasing interest. This article summarizes available data sets and relevant studies on recent developments in PCSS and PCS.

[1]  Xiangguo Lin,et al.  SVM-Based Classification of Segmented Airborne LiDAR Point Clouds in Urban Areas , 2013, Remote. Sens..

[2]  Bir Bhanu,et al.  RANGE DATA PROCESSING: REPRESENTATION OF SURFACES BY EDGES. , 1986 .

[3]  Jan-Michael Frahm,et al.  USAC: A Universal Framework for Random Sample Consensus , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Felix Morsdorf,et al.  Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling , 2009 .

[5]  Richard Bamler,et al.  Very High Resolution Spaceborne SAR Tomography in Urban Environment , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Michael Eineder,et al.  Geometrical Fusion of Multitrack PS Point Clouds , 2012, IEEE Geoscience and Remote Sensing Letters.

[7]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  David P. Helmbold,et al.  Aerial Lidar Data Classification using AdaBoost , 2007, Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007).

[9]  Silvio Savarese,et al.  Joint 2D-3D-Semantic Data for Indoor Scene Understanding , 2017, ArXiv.

[10]  Junhao Xiao,et al.  Three-dimensional point cloud plane segmentation in both structured and unstructured environments , 2013, Robotics Auton. Syst..

[11]  Frank Schultmann,et al.  Building Information Modeling (BIM) for existing buildings — Literature review and future needs , 2014 .

[12]  Andrew M. Wallace,et al.  Recovery of Forest Canopy Parameters by Inversion of Multispectral LiDAR Data , 2012, Remote. Sens..

[13]  Mohamed Boussaha,et al.  Point Cloud Oversegmentation With Graph-Structured Deep Metric Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Richard Bamler,et al.  Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[16]  Jiri Matas,et al.  Graph-Cut RANSAC , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[17]  Xiao Xiang Zhu,et al.  Data Fusion and Remote Sensing: An ever-growing relationship , 2016, IEEE Geoscience and Remote Sensing Magazine.

[18]  Stefan Hinz,et al.  CONTEXTUAL CLASSIFICATION OF POINT CLOUD DATA BY EXPLOITING INDIVIDUAL 3D NEIGBOURHOODS , 2015 .

[19]  George Vosselman,et al.  Segmentation of point clouds using smoothness constraints , 2006 .

[20]  Ulrich Neumann,et al.  Recurrent Slice Networks for 3D Segmentation of Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Denis Laurendeau,et al.  Extraction of cylinders and estimation of their parameters from point clouds , 2015, Comput. Graph..

[22]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Honggu Lee,et al.  Boundary-enhanced supervoxel segmentation for sparse outdoor LiDAR data , 2014 .

[24]  Horst Bunke,et al.  Fast range image segmentation using high-level segmentation primitives , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[25]  Anh Nguyen,et al.  3D point cloud segmentation: A survey , 2013, 2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM).

[26]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Thorsten Joachims,et al.  Semantic Labeling of 3D Point Clouds for Indoor Scenes , 2011, NIPS.

[28]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[29]  Marc Pollefeys,et al.  Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark , 2017, ArXiv.

[30]  Tania Landes,et al.  AUTOMATIC SEGMENTATION OF BUILDING FACADES USING TERRESTRIAL LASER DATA , 2007 .

[31]  Jiamao Li,et al.  3D Recurrent Neural Networks with Context Fusion for Point Cloud Semantic Segmentation , 2018, ECCV.

[32]  Franz Rottensteiner,et al.  ISPRS Test Project on Urban Classification and 3D Building Reconstruction: Evaluation of Object Detection Results , 2009 .

[33]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  J. Shan,et al.  A global optimization approach to roof segmentation from airborne lidar point clouds , 2014 .

[35]  Leonidas J. Guibas,et al.  GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Uwe Stilla,et al.  Topographic Laser Ranging and Scanning: Principles and Processing , 2008 .

[37]  C. Mallet,et al.  AIRBORNE LIDAR FEATURE SELECTION FOR URBAN CLASSIFICATION USING RANDOM FORESTS , 2009 .

[38]  Cewu Lu,et al.  PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation , 2018, ArXiv.

[39]  Andrew Owens,et al.  SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels , 2013, 2013 IEEE International Conference on Computer Vision.

[40]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[41]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[42]  Peter Biber,et al.  The normal distributions transform: a new approach to laser scan matching , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[43]  Zhen Wang,et al.  A Multiscale and Hierarchical Feature Extraction Method for Terrestrial Laser Scanning Point Cloud Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Richard Bamler,et al.  Demonstration of Super-Resolution for Tomographic SAR Imaging in Urban Environment , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[45]  François Goulette,et al.  Paris-rue-Madame Database - A 3D Mobile Laser Scanner Dataset for Benchmarking Urban Detection, Segmentation and Classification Methods , 2014, ICPRAM.

[46]  Bisheng Yang,et al.  An efficient global energy optimization approach for robust 3D plane segmentation of point clouds , 2018 .

[47]  Cheng Wang,et al.  Toward better boundary preserved supervoxel segmentation for 3D point clouds , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[48]  Ulrich Neumann,et al.  SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[49]  F. Tarsha-Kurdi,et al.  Hough-Transform and Extended RANSAC Algorithms for Automatic Detection of 3D Building Roof Planes from Lidar Data , 2007 .

[50]  Ling Shao,et al.  Enhanced Computer Vision With Microsoft Kinect Sensor: A Review , 2013, IEEE Transactions on Cybernetics.

[51]  Sunglok Choi,et al.  Performance Evaluation of RANSAC Family , 2009, BMVC.

[52]  Manuel Menezes de Oliveira Neto,et al.  Real-time detection of planar regions in unorganized point clouds , 2015, Pattern Recognit..

[53]  Frédéric Bretar,et al.  3D segmentation of forest structure using a mean-shift based algorithm , 2010, 2010 IEEE International Conference on Image Processing.

[54]  Uwe Soergel,et al.  CONDITIONAL RANDOM FIELDS for LIDAR POINT CLOUD CLASSIFICATION in COMPLEX URBAN AREAS , 2012 .

[55]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Jie Shan,et al.  Segmentation and Reconstruction of Polyhedral Building Roofs From Aerial Lidar Point Clouds , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Jan-Michael Frahm,et al.  A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus , 2008, ECCV.

[59]  Bruno Vallet,et al.  TerraMobilita/IQmulus Urban Point Cloud Classification Benchmark , 2014 .

[60]  Xiaoxiang Zhu,et al.  Robust Reconstruction of Building Facades for Large Areas Using Spaceborne TomoSAR Point Clouds , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Shu Liu,et al.  Associatively Segmenting Instances and Semantics in Point Clouds , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Andrea Faber,et al.  Introduction To Modern Photogrammetry , 2016 .

[63]  N. Pfeifer,et al.  SEGMENTATION BASED ROBUST INTERPOLATION - A NEW APPROACH TO LASER DATA FILTERING , 2005 .

[64]  Luc Van Gool,et al.  Learning Where to Classify in Multi-view Semantic Segmentation , 2014, ECCV.

[65]  Richard Bamler,et al.  Façade structure reconstruction using spaceborne TomoSAR point clouds , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[66]  Arko Lucieer,et al.  Development of a UAV-LiDAR System with Application to Forest Inventory , 2012, Remote. Sens..

[67]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[68]  Reinhard Klein,et al.  Efficient RANSAC for Point‐Cloud Shape Detection , 2007, Comput. Graph. Forum.

[69]  Anton Osokin,et al.  Fast Approximate Energy Minimization with Label Costs , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[70]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Uwe Stilla,et al.  Segmentation of 3D outdoor scenes using hierarchical clustering structure and perceptual grouping laws , 2016, 2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS).

[72]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[73]  Jian Liang,et al.  Point Cloud Segmentation and Denoising via Constrained Nonlinear Least Squares Normal Estimates , 2013, Innovations for Shape Analysis, Models and Algorithms.

[74]  Tamy Boubekeur,et al.  A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data , 2018, Comput. Graph. Forum.

[75]  Bo Du,et al.  A Three-Step Approach for TLS Point Cloud Classification , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Xiao Xiang Zhu,et al.  SEGMENTATION AND CROWN PARAMETER EXTRACTION OF INDIVIDUAL TREES IN AN AIRBORNE TOMOSAR POINT CLOUD , 2015 .

[77]  Xianfeng Huang,et al.  A Methodology for Automated Segmentation and Reconstruction of Urban 3-D Buildings from ALS Point Clouds , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[78]  Nico Blodow,et al.  Towards 3D Point cloud based object maps for household environments , 2008, Robotics Auton. Syst..

[79]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Marc Jaeger,et al.  Segmentation of architecture shape information from 3D point cloud , 2009, VRCAI '09.

[81]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[82]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[83]  Ioannis Kompatsiaris,et al.  H-RANSAC: A HYBRID POINT CLOUD SEGMENTATION COMBINING 2D AND 3D DATA , 2018, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[84]  K. Lingemann,et al.  The 3D Hough Transform for plane detection in point clouds: A review and a new accumulator design , 2011 .

[85]  Avideh Zakhor,et al.  Classifying urban landscape in aerial LiDAR using 3D shape analysis , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[86]  T. Rabbani,et al.  SEGMENTATION OF POINT CLOUDS USING SMOOTHNESS CONSTRAINT , 2006 .

[87]  Bastian Leibe,et al.  Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[88]  Richard Bamler,et al.  Let's Do the Time Warp: Multicomponent Nonlinear Motion Estimation in Differential SAR Tomography , 2011, IEEE Geoscience and Remote Sensing Letters.

[89]  Chi-Wing Fu,et al.  PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[90]  S. Gernhardt,et al.  Interferometric Potential of High Resolution Spaceborne SAR , 2009 .

[91]  F. Nex,et al.  UAV for 3D mapping applications: a review , 2014 .

[92]  Jean-Emmanuel Deschaud,et al.  A Fast and Accurate Plane Detection Algorithm for Large Noisy Point Clouds Using Filtered Normals and Voxel Growing , 2010 .

[93]  Xiao Xiang Zhu,et al.  Automatic Feature-Based Geometric Fusion of Multiview TomoSAR Point Clouds in Urban Area , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[94]  Michela Bertolotto,et al.  Octree-based region growing for point cloud segmentation , 2015 .

[95]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[96]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[97]  C. Mallet,et al.  A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds , 2017 .

[98]  Bisheng Yang,et al.  Hierarchical extraction of urban objects from mobile laser scanning data , 2015 .

[99]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[100]  Jing Hua,et al.  A-CNN: Annularly Convolutional Neural Networks on Point Clouds , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[101]  S. Filin SURFACE CLUSTERING FROM AIRBORNE LASER SCANNING DATA , 2002 .

[102]  Quan Sun,et al.  An Automated Rectification Method for Unmanned Aerial Vehicle LiDAR Point Cloud Data Based on Laser Intensity , 2019, Remote. Sens..

[103]  Lin Gao,et al.  VV-Net: Voxel VAE Net With Group Convolutions for Point Cloud Segmentation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[104]  Pushmeet Kohli,et al.  Spatial Inference Machines , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[105]  Rita Cucchiara,et al.  3D Hough transform for sphere recognition on point clouds , 2014, Machine Vision and Applications.

[106]  Stefano Mattoccia,et al.  A passive RGBD sensor for accurate and real-time depth sensing self-contained into an FPGA , 2015, ICDSC.

[107]  Thi-Lan Le,et al.  Acquiring qualified samples for RANSAC using geometrical constraints , 2018, Pattern Recognit. Lett..

[108]  Leonidas J. Guibas,et al.  Supervised Fitting of Geometric Primitives to 3D Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[109]  Hamid R. Arabnia,et al.  Parallel Edge-Region-Based Segmentation Algorithm Targeted at Reconfigurable MultiRing Network , 2003, The Journal of Supercomputing.

[110]  Zhiyuan Liu,et al.  Graph Neural Networks: A Review of Methods and Applications , 2018, AI Open.

[111]  H. Macher,et al.  FIRST EXPERIENCES WITH KINECT V2 SENSOR FOR CLOSE RANGE 3D MODELLING , 2015 .

[112]  Emmanuel P. Baltsavias,et al.  A comparison between photogrammetry and laser scanning , 1999 .

[113]  George Vosselman,et al.  Contextual segment-based classification of airborne laser scanner data , 2017 .

[114]  Silvio Savarese,et al.  3D Semantic Parsing of Large-Scale Indoor Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[115]  Jiaojiao Tian,et al.  3D change detection – Approaches and applications , 2016 .

[116]  José Luis Lerma,et al.  Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods , 2008 .

[117]  Duc Thanh Nguyen,et al.  JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds With Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[119]  Michael Eineder,et al.  Potential of very high resolution SAR for persistent scatterer interferometry in urban areas , 2010, Ann. GIS.

[120]  Fuxin Li,et al.  PointConv: Deep Convolutional Networks on 3D Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[121]  Silvio Savarese,et al.  SEGCloud: Semantic Segmentation of 3D Point Clouds , 2017, 2017 International Conference on 3D Vision (3DV).

[122]  Lars Petersson,et al.  Non-associative Higher-Order Markov Networks for Point Cloud Classification , 2014, ECCV.

[123]  Xiao Xiang Zhu,et al.  Geocoding Error Correction for InSAR Point Clouds , 2018, Remote. Sens..

[124]  Xiao Xiang Zhu,et al.  Reconstruction of Individual Trees from Multi-Aspect TomoSAR Data , 2015 .

[125]  Lei Wang,et al.  Appendix for : Graph Attention Convolution for Point Cloud Semantic Segmentation , 2019 .

[126]  Manuel Menezes de Oliveira Neto,et al.  Real-time line detection through an improved Hough transform voting scheme , 2008, Pattern Recognit..

[127]  Alexandre Boulch,et al.  Unstructured Point Cloud Semantic Labeling Using Deep Segmentation Networks , 2017, 3DOR@Eurographics.

[128]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[129]  Xiao Xiang Zhu,et al.  From TomoSAR Point Clouds to Objects: Façade Reconstruction , 2012, 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS).

[130]  Amin Zheng,et al.  RGCNN: Regularized Graph CNN for Point Cloud Segmentation , 2018, ACM Multimedia.

[131]  Michel Devy,et al.  Fast range image segmentation by an edge detection strategy , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[132]  Bruno Vallet,et al.  TerraMobilita/iQmulus urban point cloud analysis benchmark , 2015, Comput. Graph..

[133]  Alexandre Boulch,et al.  SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks , 2017, Comput. Graph..

[134]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[135]  Matthew Turk,et al.  EVSAC: Accelerating Hypotheses Generation by Modeling Matching Scores with Extreme Value Theory , 2013, 2013 IEEE International Conference on Computer Vision.

[136]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[137]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[138]  B. Gorte SEGMENTATION OF TIN-STRUCTURED SURFACE MODELS , 2002 .

[139]  David Suter,et al.  3D terrestrial LIDAR classifications with super-voxels and multi-scale Conditional Random Fields , 2009, Comput. Aided Des..

[140]  Lei Tang,et al.  An Improved RANSAC for 3D Point Cloud Plane Segmentation Based on Normal Distribution Transformation Cells , 2017, Remote. Sens..

[141]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[142]  Thomas Melzer,et al.  Non-parametric segmentation of ALS point clouds using mean shift , 2007 .

[143]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[144]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[145]  Jie Shan,et al.  CLUSTERING BASED PLANAR ROOF EXTRACTION FROM LIDAR DATA , 2006 .

[146]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[147]  C. Briese,et al.  A NEW METHOD FOR BUILDING EXTRACTION IN URBAN AREAS FROM HIGH-RESOLUTION LIDAR DATA , 2002 .

[148]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[149]  Uwe Stilla,et al.  SEGMENTATION OF LASER ALTIMETER DATA FOR BUILDING RECONSTRUCTION: DIFFERENT PROCEDURES AND COMPARISON , 2000 .

[150]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[151]  Jie Shan,et al.  MIN-CUT BASED SEGMENTATION OF AIRBORNE LIDAR POINT CLOUDS , 2012 .

[152]  Yusheng Xu,et al.  Unsupervised Segmentation of Point Clouds From Buildings Using Hierarchical Clustering Based on Gestalt Principles , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[153]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[154]  Jonathon J. Donager,et al.  UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA , 2017 .

[155]  Antti Ylä-Jääski,et al.  Adaptive Termination of Voting in the Probabilistic Circular Hough Transform , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[156]  Guannan Gao,et al.  Probabilistic Hough Transform , 2011 .

[157]  Xiao Xiang Zhu,et al.  Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources , 2017, IEEE Geoscience and Remote Sensing Magazine.

[158]  François Goulette,et al.  Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification , 2017, Int. J. Robotics Res..

[159]  Richard Bamler,et al.  Ghost Persistent Scatterers Related to Multiple Signal Reflections , 2011, IEEE Geoscience and Remote Sensing Letters.

[160]  Stefan Hinz,et al.  Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers , 2015 .

[161]  Uwe Stilla,et al.  VOXEL- AND GRAPH-BASED POINT CLOUD SEGMENTATION OF 3D SCENES USING PERCEPTUAL GROUPING LAWS , 2017 .

[162]  Florentin Wörgötter,et al.  Object Partitioning Using Local Convexity , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[163]  Florentin Wörgötter,et al.  Voxel Cloud Connectivity Segmentation - Supervoxels for Point Clouds , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[164]  Martial Hebert,et al.  Scale selection for classification of point-sampled 3D surfaces , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[165]  Jing Zhang,et al.  Investigation on the Weighted RANSAC Approaches for Building Roof Plane Segmentation from LiDAR Point Clouds , 2015, Remote. Sens..

[166]  H. Hirschmüller Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information , 2005, CVPR.

[167]  Pavel Smrz,et al.  Continuous plane detection in point-cloud data based on 3D Hough Transform , 2014, J. Vis. Commun. Image Represent..

[168]  Fabio Remondino,et al.  A REVIEW OFPOINT CLOUDS SEGMENTATION AND CLASSIFICATION ALGORITHMS , 2017 .

[169]  Martial Hebert,et al.  3-D scene analysis via sequenced predictions over points and regions , 2011, 2011 IEEE International Conference on Robotics and Automation.

[170]  Heiko Hirschmüller,et al.  Evaluation of Cost Functions for Stereo Matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[171]  O. Barinova,et al.  NON-ASSOCIATIVE MARKOV NETWORKS FOR 3D POINT CLOUD CLASSIFICATION , 2010 .

[172]  Xiaoxiang Zhu,et al.  Facade Reconstruction Using Multiview Spaceborne TomoSAR Point Clouds , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[173]  Martin Simonovsky,et al.  Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[174]  G. Sithole,et al.  Recognising structure in laser scanning point clouds , 2004 .

[175]  Xiao Xiang Zhu,et al.  Fusing Meter-Resolution 4-D InSAR Point Clouds and Optical Images for Semantic Urban Infrastructure Monitoring , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[176]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[177]  Thomas A. Funkhouser,et al.  Min-cut based segmentation of point clouds , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[178]  Alena Schmidt,et al.  Classification of Airborne Laser Scanning Data in Wadden Sea Areas Using Conditional Random Fields , 2012 .

[179]  BoykovYuri,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006 .

[180]  Abdul Nurunnabi,et al.  Robust Segmentation in Laser Scanning 3D Point Cloud Data , 2012, 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA).

[181]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[182]  Yan Lu,et al.  Simplified markov random fields for efficient semantic labeling of 3D point clouds , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[183]  J. Niemeyer,et al.  Contextual classification of lidar data and building object detection in urban areas , 2014 .

[184]  T. Rabbani,et al.  EFFICIENT HOUGH TRANSFORM FOR AUTOMATIC DETECTION OF CYLINDERS IN POINT CLOUDS , 2005 .

[185]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[186]  Richard Bamler,et al.  Nonlocal Compressive Sensing-Based SAR Tomography , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[187]  Jiri Matas,et al.  Progressive probabilistic Hough transform for line detection , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[188]  Uwe Stilla,et al.  Object extraction based on 3D-segmentation of LiDAR data by combining mean shift with normalized cuts: Two examples from urban areas , 2009, 2009 Joint Urban Remote Sensing Event.

[189]  Martial Hebert,et al.  Contextual classification with functional Max-Margin Markov Networks , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[190]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[191]  Yangzi Cong,et al.  3D Forest Mapping Using A Low-Cost UAV Laser Scanning System: Investigation and Comparison , 2019, Remote. Sens..

[192]  Subhransu Maji,et al.  SPLATNet: Sparse Lattice Networks for Point Cloud Processing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[193]  Burcu Akinci,et al.  Automatic Reconstruction of As-Built Building Information Models from Laser-Scanned Point Clouds: A Review of Related Techniques | NIST , 2010 .