INSPECTION OF SPECULAR AND PARTIALLY SPECULAR SURFACES

The inspection of specular surfaces differs significantly from the case of non-specular surfaces. In contrast to the non-specular case, the appearance of a specular surface is dominated by the reflections of the environment that are visible in it. The transfer of this observation into automated visual inspection is called deflectometry. The main principle of deflectometric surface acquisition is to use a highly controllable environment, where a screen on which a well-defined pattern is presented is observed via the specular reflecting surface. Knowing that pattern, it is possible to inspect the surface qualitatively and - at least with certain additional knowledge - to reconstruct the surface under test. In this paper, we introduce the theoretical background of deflectometry. After presenting some properties of the deflectometric inspection itself, we describe the qualitative and quantitative evaluation of the deflectometric observation in detail. We will show that an inspection of specular and partially specular objects is feasible in an industrially applicable inspection system. For complexly formed and/or large objects, we propose a robot-based inspection setup.

[1]  Jürgen Beyerer,et al.  Shape from Specular Reflection and Optical Flow , 2008, International Journal of Computer Vision.

[2]  R. Ritter,et al.  Contribution to analysis of the reflection grating method , 1983 .

[3]  T.F. Quatieri,et al.  Statistical model-based algorithms for image analysis , 1986, Proceedings of the IEEE.

[4]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[5]  David J. Kriegman,et al.  Integrating Surface Normal Vectors Using Fast Marching Method , 2006, ECCV.

[6]  Rainer Tutsch,et al.  Reflection grating photogrammetry: a technique for absolute shape measurement of specular free-form surfaces , 2005, SPIE Optics + Photonics.

[7]  Katsushi Ikeuchi,et al.  Determining Surface Orientations of Specular Surfaces by Using the Photometric Stereo Method , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Rama Chellappa,et al.  A Method for Enforcing Integrability in Shape from Shading Algorithms , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Hugues Hoppe Surface Reconstruction from Unorganized Points (PhD Thesis) , 1994 .

[10]  Stefan Rahmann,et al.  Reconstruction of specular surfaces using polarization imaging , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Svenja Ettl,et al.  Fast and robust 3D shape reconstruction from gradient data , 2007 .

[12]  Wesley E. Snyder,et al.  Noise Reduction in Surface Reconstruction from a Given Gradient Field , 2004, International Journal of Computer Vision.

[13]  M. Topi,et al.  Robust texture classification by subsets of local binary patterns , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[14]  Wesley E. Snyder,et al.  Reconstructing discontinuous surfaces from a given gradient field using partial integrability , 2003, Comput. Vis. Image Underst..

[15]  Michael J. Black,et al.  Specular Flow and the Recovery of Surface Structure , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[16]  Peter F. Sturm,et al.  Voxel carving for specular surfaces , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[17]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[18]  Jonathan Balzer,et al.  Regularization of the deflectometry problem using shading data , 2006, SPIE Optics East.

[19]  Lee E. Weiss,et al.  Structured Highlight Inspection of Specular Surfaces , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  R. Fabio From point cloud to surface the modeling and visualization problem , 2003 .

[21]  Fabio Remondino From point cloud to surface , 2003 .

[22]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[24]  Gary A. Atkinson,et al.  Surface shape and reflectance analysis using polarisation , 2007 .

[25]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Markus C. Knauer,et al.  Phase measuring deflectometry: a new approach to measure specular free-form surfaces , 2004, SPIE Photonics Europe.

[27]  Zengfu Wang,et al.  Determining Shape of Specular Surfaces , 2007 .

[28]  Sören Kammel,et al.  Deflektometrische Untersuchung spiegelnd reflektierender Freiformflächen , 2005 .

[29]  Min Chen,et al.  Local Shape from Mirror Reflections , 2005, International Journal of Computer Vision.

[30]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[31]  Rama Chellappa,et al.  Texture synthesis using 2-D noncausal autoregressive models , 1985, IEEE Trans. Acoust. Speech Signal Process..

[32]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[33]  J. Balzer,et al.  Regularisierung des Deflektometrieproblems - Grundlagen und Anwendung , 2008 .

[34]  Pavel B. Bochev,et al.  On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..

[35]  Ju¨rgen H. Massig Deformation measurement on specular surfaces by simple means , 2001 .

[36]  Peter Kovesi,et al.  Shapelets correlated with surface normals produce surfaces , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[37]  Matti Pietikäinen,et al.  Robust Texture Classification by Subsets of Local Binary Patterns , 2000, ICPR.

[38]  Svenja Ettl,et al.  Shape reconstruction from gradient data. , 2007, Applied optics.

[39]  Lawrence B. Wolff Surface Orientation From Two Camera Stereo With Polarizers , 1990, Other Conferences.

[40]  Oded Kafri,et al.  Reflective surface analysis using moiré deflectometry. , 1981, Applied optics.

[41]  Andrew Blake,et al.  The information available to a moving observer from specularities , 1989, Image and Vision Computing.