Realizing Active Inference in Variational Message Passing: The Outcome-Blind Certainty Seeker

Abstract Active inference is a state-of-the-art framework in neuroscience that offers a unified theory of brain function. It is also proposed as a framework for planning in AI. Unfortunately, the complex mathematics required to create new models can impede application of active inference in neuroscience and AI research. This letter addresses this problem by providing a complete mathematical treatment of the active inference framework in discrete time and state spaces and the derivation of the update equations for any new model. We leverage the theoretical connection between active inference and variational message passing as described by John Winn and Christopher M. Bishop in 2005. Since variational message passing is a well-defined methodology for deriving Bayesian belief update equations, this letter opens the door to advanced generative models for active inference. We show that using a fully factorized variational distribution simplifies the expected free energy, which furnishes priors over policies so that agents seek unambiguous states. Finally, we consider future extensions that support deep tree searches for sequential policy optimization based on structure learning and belief propagation.

[1]  Karl J. Friston,et al.  The relationship between dynamic programming and active inference: the discrete, finite-horizon case , 2020, ArXiv.

[2]  Mohammad Emtiyaz Khan,et al.  Variational Message Passing with Structured Inference Networks , 2018, ICLR.

[3]  Kai Ueltzhöffer,et al.  Deep active inference , 2017, Biological Cybernetics.

[4]  M. Aman,et al.  The Repetitive Behavior Scale-Revised: Independent Validation in Individuals with Autism Spectrum Disorders , 2007, Journal of autism and developmental disorders.

[5]  Stephen J. Roberts,et al.  A tutorial on variational Bayesian inference , 2012, Artificial Intelligence Review.

[6]  Alexander Tschantz,et al.  Scaling Active Inference , 2019, 2020 International Joint Conference on Neural Networks (IJCNN).

[7]  J. Yedidia Message-Passing Algorithms for Inference and Optimization , 2011 .

[8]  Karl J. Friston A free energy principle for a particular physics , 2019, 1906.10184.

[9]  Karl J. Friston,et al.  Bayesian model reduction , 2018, 1805.07092.

[10]  Marc Toussaint,et al.  On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference (Extended Abstract) , 2013, IJCAI.

[11]  Karl J. Friston,et al.  Active Inference, Curiosity and Insight , 2017, Neural Computation.

[12]  Karl J. Friston,et al.  Markov blankets, information geometry and stochastic thermodynamics , 2019, Philosophical Transactions of the Royal Society A.

[13]  Simon M. Lucas,et al.  A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[14]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[15]  Marco Cox,et al.  A Factor Graph Approach to Automated Design of Bayesian Signal Processing Algorithms , 2018, Int. J. Approx. Reason..

[16]  K. Kangawa,et al.  Ghrelin: structure and function. , 2005, Physiological reviews.

[17]  Dimitri Ognibene,et al.  Ecological Active Vision: Four Bioinspired Principles to Integrate Bottom–Up and Adaptive Top–Down Attention Tested With a Simple Camera-Arm Robot , 2015, IEEE Transactions on Autonomous Mental Development.

[18]  F. Cozman,et al.  Generalizing variable elimination in Bayesian networks , 2000 .

[19]  David Silver,et al.  Deep Reinforcement Learning with Double Q-Learning , 2015, AAAI.

[20]  Karl J. Friston,et al.  Human visual exploration reduces uncertainty about the sensed world , 2018, PloS one.

[21]  Karl J. Friston,et al.  Scene Construction, Visual Foraging, and Active Inference , 2016, Front. Comput. Neurosci..

[22]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[23]  Stefan J. Kiebel,et al.  An empirical evaluation of active inference in multi-armed bandits , 2021, Neural Networks.

[24]  Karl J. Friston,et al.  Neuronal message passing using Mean-field, Bethe, and Marginal approximations , 2019, Scientific Reports.

[25]  Roland Göcke,et al.  Self-Stimulatory Behaviours in the Wild for Autism Diagnosis , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[26]  Karl J. Friston,et al.  Active inference on discrete state-spaces: A synthesis , 2020, Journal of mathematical psychology.

[27]  Raymond J. Dolan,et al.  The anatomy of choice: active inference and agency , 2013, Front. Hum. Neurosci..

[28]  Karl J. Friston,et al.  Sophisticated Inference , 2020, Neural Computation.

[29]  Tim Verbelen,et al.  Active Vision for Robot Manipulators Using the Free Energy Principle , 2021, Frontiers in Neurorobotics.

[30]  Guillaume Lample,et al.  Playing FPS Games with Deep Reinforcement Learning , 2016, AAAI.

[31]  Charles M. Bishop,et al.  Variational Message Passing , 2005, J. Mach. Learn. Res..

[32]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[33]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[34]  Karl J. Friston,et al.  Deep active inference agents using Monte-Carlo methods , 2020, NeurIPS.

[35]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[36]  M. Cuccaro,et al.  Repetitive behaviors in autism: relationships with associated clinical features. , 2005, Research in developmental disabilities.

[37]  Thijs van de Laar,et al.  Simulating Active Inference Processes by Message Passing , 2019, Front. Robot. AI.

[38]  Michael I. Jordan,et al.  A generalized mean field algorithm for variational inference in exponential families , 2002, UAI.

[39]  Raymond J. Dolan,et al.  Dopamine, reward learning, and active inference , 2015, Front. Comput. Neurosci..

[40]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[41]  Lancelot Da Costa,et al.  Branching Time Active Inference: the theory and its generality , 2021, ArXiv.

[42]  Flavio E. Spetale,et al.  A Factor Graph Approach to Automated GO Annotation , 2016, PloS one.

[43]  Simon McGregor,et al.  The free energy principle for action and perception: A mathematical review , 2017, 1705.09156.

[44]  Karl J. Friston,et al.  Deep Active Inference and Scene Construction , 2020, bioRxiv.

[45]  Karl J. Friston,et al.  Generalised free energy and active inference: can the future cause the past? , 2018 .

[46]  Temple F. Smith Occam's razor , 1980, Nature.

[47]  Beren Millidge,et al.  Whence the Expected Free Energy? , 2020, Neural Computation.

[48]  Linda C. van der Gaag,et al.  Probabilistic Graphical Models , 2014, Lecture Notes in Computer Science.

[49]  Karl J. Friston,et al.  Active inference and learning , 2016, Neuroscience & Biobehavioral Reviews.

[50]  Zenon W. Pylyshyn,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[51]  Wim Wiegerinck,et al.  Variational Approximations between Mean Field Theory and the Junction Tree Algorithm , 2000, UAI.

[52]  K. Berridge The debate over dopamine’s role in reward: the case for incentive salience , 2007, Psychopharmacology.

[53]  Tim Verbelen,et al.  Sleep: Model Reduction in Deep Active Inference , 2020, IWAI.

[54]  Christopher M. Bishop,et al.  Structured Variational Distributions in VIBES , 2003, AISTATS.

[55]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[56]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[57]  Ryan Smith,et al.  A step-by-step tutorial on active inference and its application to empirical data , 2021, Journal of mathematical psychology.

[58]  M. Botvinick,et al.  Planning as inference , 2012, Trends in Cognitive Sciences.

[59]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[60]  Karl J. Friston,et al.  Active inference and epistemic value , 2015, Cognitive neuroscience.

[61]  Karl J. Friston,et al.  Deep temporal models and active inference , 2017, Neuroscience & Biobehavioral Reviews.

[62]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[63]  Howard Bowman,et al.  Cognition, Concurrency Theory and Reverberations in the Brain: in Search of a Calculus of Communicating (Recurrent) Neural Systems , 2014, HOWARD-60.

[64]  Karl J. Friston,et al.  The graphical brain: Belief propagation and active inference , 2017, Network Neuroscience.

[65]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[66]  Karl J. Friston,et al.  Computational mechanisms of curiosity and goal-directed exploration , 2018, bioRxiv.

[67]  Marc Toussaint,et al.  On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference , 2012, Robotics: Science and Systems.

[68]  Sergey Levine,et al.  Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review , 2018, ArXiv.