Temporal and Spatial Independent Component Analysis for fMRI data sets embedded in a R package

For statistical analysis of functional Magnetic Resonance Imaging (fMRI) data sets, we propose a data-driven approach based on Independent Component Analysis (ICA) implemented in a new version of the AnalyzeFMRI R package. For fMRI data sets, spatial dimension being much greater than temporal dimension, spatial ICA is the tractable approach generally proposed. However, for some neuroscientific applications, temporal independence of source signals can be assumed and temporal ICA becomes then an attracting exploratory technique. In this work, we use a classical linear algebra result ensuring the tractability of temporal ICA. We report several experiments on synthetic data and real MRI data sets that demonstrate the potential interest of our R package.

[1]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[2]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[3]  A. M. Hilliard AFFILIATION , 1910 .

[4]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[5]  Nicholas Lange,et al.  What can modern statistics offer imaging neuroscience? , 2003, Statistical methods in medical research.

[6]  Rna Henson,et al.  Analysis of fMRI time series: Linear Time-Invariant models, event-related fMRI and optimal experimental design , 2003 .

[7]  Rudolf Beran,et al.  Nonparametric tests of independence between random vectors , 2006 .

[8]  W. Chen,et al.  Principles of BOLD Functional MRI , 2000 .

[9]  Jarkko Ylipaavalniemi,et al.  Analyzing consistency of independent components: An fMRI illustration , 2008, NeuroImage.

[10]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[11]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[12]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[13]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[14]  Andreas Bartels,et al.  The chronoarchitecture of the human brain—natural viewing conditions reveal a time-based anatomy of the brain , 2004, NeuroImage.

[15]  Riitta Hari,et al.  Towards natural stimulation in fMRI—Issues of data analysis , 2007, NeuroImage.

[16]  Karl J. Friston,et al.  Unified SPM–ICA for fMRI analysis , 2005, NeuroImage.

[17]  Trevor S. Smart,et al.  The Statistical Analysis of Functional MRI Data , 2010 .

[18]  Zhishun Wang,et al.  Partner‐matching for the automated identification of reproducible ICA components from fMRI datasets: Algorithm and validation , 2008, Human brain mapping.

[19]  R. Abugharbieh,et al.  Increasing the effect size in event-related fMRI studies , 2006, IEEE Engineering in Medicine and Biology Magazine.

[20]  V D Calhoun,et al.  Spatial and temporal independent component analysis of functional MRI data containing a pair of task‐related waveforms , 2001, Human brain mapping.

[21]  Jean-Baptiste Poline,et al.  A group model for stable multi-subject ICA on fMRI datasets , 2010, NeuroImage.

[22]  Bertrand Thirion,et al.  Mixed-effect statistics for group analysis in fMRI: A nonparametric maximum likelihood approach , 2007, NeuroImage.

[23]  Rajesh Nandy,et al.  Independent component analysis in the presence of noise in fMRI. , 2007, Magnetic resonance imaging.

[24]  Vince D. Calhoun,et al.  Performance of blind source separation algorithms for fMRI analysis using a group ICA method. , 2007, Magnetic resonance imaging.

[25]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[26]  Aapo Hyvärinen,et al.  Independent component analysis of fMRI group studies by self-organizing clustering , 2005, NeuroImage.

[27]  Markus Svensén,et al.  ICA of fMRI Group Study Data , 2002, NeuroImage.

[28]  John G. Neuhoff,et al.  Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex , 2002, Science.

[29]  R. Edelman,et al.  Magnetic resonance imaging (2) , 1993, The New England journal of medicine.

[30]  Aapo Hyvärinen,et al.  Independent Component Analysis For Binary Data: An Experimental Study , 2001 .

[31]  Chantal Delon-Martin,et al.  fMRI Retinotopic Mapping—Step by Step , 2002, NeuroImage.

[32]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[33]  Karl J. Friston,et al.  Mixed-effects and fMRI studies , 2005, NeuroImage.

[34]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[35]  Jean-François Cardoso,et al.  Dependence, Correlation and Gaussianity in Independent Component Analysis , 2003, J. Mach. Learn. Res..

[36]  Baxter P Rogers,et al.  Power spectrum ranked independent component analysis of a periodic fMRI complex motor paradigm , 2003, Human brain mapping.

[37]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  Nikos K Logothetis,et al.  On the nature of the BOLD fMRI contrast mechanism. , 2004, Magnetic resonance imaging.

[39]  P. Lafaye de Micheaux,et al.  A multivariate empirical characteristic function test of independence with normal marginals , 2003 .

[40]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[41]  Sophie Achard The Statistical Analysis of Functional MRI Data , 2008 .

[42]  Karl J. Friston Modes or models: a critique on independent component analysis for fMRI , 1998, Trends in Cognitive Sciences.

[43]  Jean-Baptiste Poline,et al.  Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses , 2007, NeuroImage.

[44]  Aapo Hyvärinen,et al.  Validating the independent components of neuroimaging time series via clustering and visualization , 2004, NeuroImage.