Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes

Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.

[1]  I. Zhulin,et al.  PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. , 1997, Trends in biochemical sciences.

[2]  Bhanu Rekapalli,et al.  Dynamics of domain coverage of the protein sequence universe , 2012, BMC Genomics.

[3]  S. Eddy,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[4]  M. Bott,et al.  Sensor Kinase CitA binding domain , 2003 .

[5]  C. Ponting,et al.  PAS: a multifunctional domain family comes to light , 1997, Current Biology.

[6]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[7]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[8]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[9]  Yoko Eguchi,et al.  Two-component signal transduction as potential drug targets in pathogenic bacteria. , 2010, Current opinion in microbiology.

[10]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[11]  S. Chervitz,et al.  Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Igor B. Zhulin,et al.  Four-helix bundle: a ubiquitous sensory module in prokaryotic signal transduction , 2005, Bioinform..

[13]  W. Hendrickson,et al.  Crystal Structures of C4-Dicarboxylate Ligand Complexes with Sensor Domains of Histidine Kinases DcuS and DctB* , 2008, Journal of Biological Chemistry.

[14]  S. Böcker,et al.  Comprehensive cluster analysis with Transitivity Clustering , 2011, Nature Protocols.

[15]  Luke E. Ulrich,et al.  PAS domain containing chemoreceptor couples dynamic changes in metabolism with chemotaxis , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Johannes Söding,et al.  Protein homology detection by HMM?CHMM comparison , 2005, Bioinform..

[17]  J. A. Gavira,et al.  Evidence for chemoreceptors with bimodular ligand-binding regions harboring two signal-binding sites , 2012, Proceedings of the National Academy of Sciences.

[18]  K. Devine,et al.  A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway , 2008, Molecular microbiology.

[19]  C. Solano,et al.  Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation , 2004, Molecular microbiology.

[20]  A. Dolphin Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond , 2012, Nature Reviews Neuroscience.

[21]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[22]  C. Ponting,et al.  The GAF domain: an evolutionary link between diverse phototransducing proteins. , 1997, Trends in biochemical sciences.

[23]  H. Szurmant,et al.  Insight into the sporulation phosphorelay: Crystal structure of the sensor domain of Bacillus subtilis histidine kinase, KinD , 2013, Protein science : a publication of the Protein Society.

[24]  S. Stahl,et al.  The diverse therapeutic actions of pregabalin: is a single mechanism responsible for several pharmacological activities? , 2013, Trends in pharmacological sciences.

[25]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[26]  B. Montgomery,et al.  Phytochrome ancestry: sensors of bilins and light. , 2002, Trends in plant science.

[27]  J. Chory,et al.  Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4 , 2011, Nature chemical biology.

[28]  Francesc Posas,et al.  Yeast HOG1 MAP Kinase Cascade Is Regulated by a Multistep Phosphorelay Mechanism in the SLN1–YPD1–SSK1 “Two-Component” Osmosensor , 1996, Cell.

[29]  S. Kay,et al.  Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Schubert,et al.  Gac/Rsm signal transduction pathway of γ‐proteobacteria: from RNA recognition to regulation of social behaviour , 2007, Molecular microbiology.

[31]  D. Sabatini,et al.  Nutrient-Sensing Mechanisms across Evolution , 2015, Cell.

[32]  Y. Eguchi,et al.  Isolation and Characterization of Signermycin B, an Antibiotic That Targets the Dimerization Domain of Histidine Kinase WalK , 2012, Antimicrobial Agents and Chemotherapy.

[33]  J. Ghigo,et al.  A CsgD-Independent Pathway for Cellulose Production and Biofilm Formation in Escherichia coli , 2006, Journal of bacteriology.

[34]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[35]  D. Raitt,et al.  Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure , 2003, The Journal of cell biology.

[36]  David A. Lee,et al.  CATH: comprehensive structural and functional annotations for genome sequences , 2014, Nucleic Acids Res..

[37]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[38]  A. Lupas,et al.  Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. , 2010, Journal of molecular biology.

[39]  J. S. Parkinson,et al.  Bacterial chemoreceptors: high-performance signaling in networked arrays. , 2008, Trends in biochemical sciences.

[40]  W. Hendrickson,et al.  Structural characterization of the predominant family of histidine kinase sensor domains. , 2010, Journal of molecular biology.

[41]  S. Crosson,et al.  Ligand-binding PAS domains in a genomic, cellular, and structural context. , 2011, Annual review of microbiology.

[42]  Birgit Eisenhaber,et al.  TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter , 2004, Bioinform..

[43]  Seema Patel Pathogenicity-associated protein domains: The fiercely-conserved evolutionary signatures , 2017, Gene Reports.

[44]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[45]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[46]  Igor B Zhulin,et al.  Evolution and phyletic distribution of two-component signal transduction systems. , 2010, Current opinion in microbiology.

[47]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[48]  Daniel W. A. Buchan,et al.  Scalable web services for the PSIPRED Protein Analysis Workbench , 2013, Nucleic Acids Res..

[49]  Joanne I. Yeh,et al.  Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. , 1995, Science.

[50]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[51]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[52]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[53]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[54]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[55]  M. Homma,et al.  Ligand Specificity Determined by Differentially Arranged Common Ligand-binding Residues in Bacterial Amino Acid Chemoreceptors Tsr and Tar* , 2011, The Journal of Biological Chemistry.

[56]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. , 1999, Molecular biology and evolution.

[57]  C. Waldburger,et al.  Crystal Structure of a Functional Dimer of the PhoQ Sensor Domain , 2008, Journal of Biological Chemistry.

[58]  Alexey G. Murzin,et al.  SCOP2 prototype: a new approach to protein structure mining , 2014, Nucleic Acids Res..

[59]  Igor B. Zhulin,et al.  The MiST2 database: a comprehensive genomics resource on microbial signal transduction , 2009, Nucleic Acids Res..

[60]  Robert D. Finn,et al.  Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models , 2014, BMC Bioinformatics.

[61]  B. Adler,et al.  Cloning and characterisation of the Pasteurella multocida ahpA gene responsible for a haemolytic phenotype in Escherichia coli. , 2000, Veterinary microbiology.

[62]  E V Koonin,et al.  Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. , 2001, Journal of molecular biology.

[63]  J. Ramos,et al.  Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. , 2010, Environmental microbiology.

[64]  Peer Bork,et al.  SMART: recent updates, new developments and status in 2015 , 2014, Nucleic Acids Res..

[65]  Yuxing Liao,et al.  ECOD: An Evolutionary Classification of Protein Domains , 2014, PLoS Comput. Biol..

[66]  James R. Brown,et al.  Evolution of two-component signal transduction. , 2000, Molecular biology and evolution.

[67]  Gwendowlyn S. Knapp,et al.  Cyclic AMP signalling in mycobacteria: redirecting the conversation with a common currency , 2011, Cellular microbiology.

[68]  Gustavo Caetano-Anollés,et al.  Origin and Evolution of Protein Fold Designs Inferred from Phylogenomic Analysis of CATH Domain Structures in Proteomes , 2013, PLoS Comput. Biol..

[69]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[70]  I. Zhulin,et al.  PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light , 1999, Microbiology and Molecular Biology Reviews.

[71]  A. Dolphin Calcium channel auxiliary alpha(2)delta and beta subunits: trafficking and one step beyond , 2012 .

[72]  Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor , 2000, The EMBO journal.

[73]  B. Bassler,et al.  Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing , 2006, Cell.

[74]  L. Aravind,et al.  Cache - a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. , 2000, Trends in biochemical sciences.

[75]  Luke E. Ulrich,et al.  One-component systems dominate signal transduction in prokaryotes. , 2005, Trends in microbiology.

[76]  M. Gerth,et al.  A high‐throughput screen for ligand binding reveals the specificities of three amino acid chemoreceptors from Pseudomonas syringae pv. actinidiae , 2015, Molecular microbiology.

[77]  R. Parthasarathy,et al.  Structure and proposed mechanism for the pH-sensing Helicobacter pylori chemoreceptor TlpB. , 2012, Structure.

[78]  K. Eskridge,et al.  Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus , 2013, BMC Genomics.

[79]  W. Hol,et al.  GAF domains: two-billion-year-old molecular switches that bind cyclic nucleotides. , 2002, Molecular interventions.

[80]  N. Duke,et al.  Structures and solution properties of two novel periplasmic sensor domains with c-type heme from chemotaxis proteins of Geobacter sulfurreducens: implications for signal transduction. , 2008, Journal of molecular biology.

[81]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.