The hierarchy of circuit diameters and transportation polytopes

Abstract The study of the diameter of the graph of polyhedra is a classical problem in the theory of linear programming. While transportation polytopes are at the core of operations research and statistics it is still unknown whether the Hirsch conjecture is true for general m × n -transportation polytopes. In earlier work the first three authors introduced a hierarchy of variations to the notion of graph diameter in polyhedra. This hierarchy provides some interesting lower bounds for the usual graph diameter. This paper has three contributions: First, we compare the hierarchy of diameters for the m × n -transportation polytopes. We show that the Hirsch conjecture bound of m + n − 1 is actually valid in most of these diameter notions. Second, we prove that for 3 × n -transportation polytopes the Hirsch conjecture holds in the classical graph diameter. Third, we show for 2 × n -transportation polytopes that the stronger monotone Hirsch conjecture holds and improve earlier bounds on the graph diameter.

[1]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[2]  Steffen Borgwardt,et al.  Edges vs Circuits: a Hierarchy of Diameters in Polyhedra , 2014, 1409.7638.

[3]  Tamon Stephen,et al.  Circuit diameter and Klee-Walkup constructions , 2015, ArXiv.

[4]  Edward D. Kim,et al.  An Update on the Hirsch Conjecture , 2009, 0907.1186.

[5]  Francisco Santos,et al.  A counterexample to the Hirsch conjecture , 2010, ArXiv.

[6]  Jesús A. De Loera,et al.  Graphs of transportation polytopes , 2007, J. Comb. Theory, Ser. A.

[7]  Steffen Borgwardt,et al.  On the diameter of partition polytopes and vertex-disjoint cycle cover , 2013, Math. Program..

[8]  F. L. Hitchcock The Distribution of a Product from Several Sources to Numerous Localities , 1941 .

[9]  Peter Gritzmann,et al.  A balanced k-means algorithm for weighted point sets , 2013, ArXiv.

[10]  Victor Klee,et al.  Many Polytopes Meeting the Conjectured Hirsch Bound , 1998, Discret. Comput. Geom..

[11]  K. Haley The Multi-Index Problem , 1963 .

[12]  Denis Naddef,et al.  The hirsch conjecture is true for (0, 1)-polytopes , 1989, Math. Program..

[13]  Leen Stougie,et al.  A Linear Bound On The Diameter Of The Transportation Polytope* , 2006, Comb..

[14]  Tomomi Matsui,et al.  Adjacency on Combinatorial Polyhedra , 1995, Discret. Appl. Math..

[15]  Raymond Hemmecke,et al.  On the Circuit Diameter of Dual Transportation Polyhedra , 2014, SIAM J. Discret. Math..

[16]  Michel Balinski,et al.  Signature classes of transportation polytopes , 1993, Math. Program..

[17]  M. L. Balinski,et al.  On two special classes of transportation polytopes , 1974 .

[18]  M. L. Balinski,et al.  The Hirsch Conjecture for Dual Transportation Polyhedra , 1984, Math. Oper. Res..

[19]  Edward D. Kim,et al.  Combinatorics and geometry of transportation polytopes: An update , 2013, Discrete Geometry and Algebraic Combinatorics.

[20]  V. A. Yemelicher,et al.  Polytopes, Graphs and Optimisation , 1984 .

[21]  Kerstin Fritzsche,et al.  More polytopes meeting the conjectured Hirsch bound , 1999, Discret. Math..

[22]  M. Balinski,et al.  On the Assignment Polytope , 1974 .