Control no lineal robusto de una maqueta de helicóptero con rotores de velocidad variable

This paper presents the design of a robust nonlinear controller for a scaled helicopter. This device features rotors with fixed angles of attack blades, and is controlled by changing the speed of the rotors using two direct drive engines. The resultant system is multivariable (2 inputs and 4 outputs), highly nonlinear and strongly coupled. The application presented in this paper includes the design of a robust controller that rejects persistent disturbances, which is based on feedback linearization and two external controllers. These controllers have PID structure and are designed using LQR regulators extending the state vector with the integral of the positions. The methodology has been verified by means of experimental results

[1]  B. Srinivasan,et al.  A toy more difficult to control than the real thing , 1997, 1997 European Control Conference (ECC).

[2]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[3]  George A. Bekey,et al.  Learning helicopter control through "teaching by showing" , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[4]  I. Postlethwaite,et al.  Advanced helicopter flight control using two-degree-of-freedom H(infinity) optimization , 1996 .

[5]  Ciann-Dong Yang,et al.  Nonlinear H/sub /spl infin// helicopter control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[6]  Francisco R. Rubio,et al.  Control adaptativo y robusto , 1996 .

[7]  Rogelio Lozano,et al.  Non-linear Control for Underactuated Mechanical Systems , 2001 .

[8]  Bernard Brogliato,et al.  Nonlinear modelling and control of helicopters , 2003, Autom..

[9]  A. Isidori Nonlinear Control Systems , 1985 .

[10]  Gary J. Balas,et al.  Flight control design using robust dynamic inversion and time-scale separation , 1996, Autom..

[11]  F.R. Rubio,et al.  Control of a laboratory helicopter using switched 2-step feedback linearization , 2004, Proceedings of the 2004 American Control Conference.

[12]  Ian Postlethwaite,et al.  H∞ Control of the NRC Bell 205 Fly-by-Wire Helicopter , 1999 .

[13]  Manuel G. Ortega,et al.  Robustness improvement of a nonlinear H ∞ controller for robot manipulators via saturation functions , 2005 .

[14]  J. W. Humberston Classical mechanics , 1980, Nature.

[15]  Gaurav S. Sukhatme,et al.  Visual servoing of an autonomous helicopter in urban areas using feature tracking , 2006, J. Field Robotics.

[16]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[17]  Mario Garcia-Sanz,et al.  Control del Ángulo de Cabeceo de un Helicóptero Como Benchmark de Diseño de Controladores , 2006 .

[18]  Robert E. Mahony,et al.  Control of a quadrotor helicopter using visual feedback , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[19]  Rogelio Lozano,et al.  Modelado y Estabilización de un Helicóptero con Cuatro Rotores , 2007 .

[20]  Roland Siegwart,et al.  PID vs LQ control techniques applied to an indoor micro quadrotor , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).