Complexity classes and theories of finite models

AbstractLetL $$ \subseteq $$ Σ* be accepted in timef(n) by a nondeterministic Turing machine. Then there is a monadic existential second-order sentence σ in the language of + such that for everyx∈Σ*,x∈L if and only if a certain structureUxf of cardinalityf(|x|) satisfies σ. It follows that ifL is accepted in nondeterministic timend, d a natural number, then there is a sentence whose relational symbols ared-ary or less, whose finite spectrum isL.

[1]  Harry R. Lewis,et al.  Complexity of solvable cases of the decision problem for the predicate calculus , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[2]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[3]  Neil D. Jones,et al.  Turing machines and the spectra of first-order formulas with equality , 1972, STOC.

[4]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[5]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..

[6]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[7]  Neil Immerman,et al.  Length of predicate calculus formulas as a new complexity measure , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[8]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[9]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[10]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[11]  W. Ackermann Asser Günter. Das Repräsentantenproblem im Prädikatenkalkül der ersten Stufe mit Identität. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, Bd. 1 (1955), S. 252–263. , 1958 .

[12]  Ronald Fagin,et al.  Monadic generalized spectra , 1975, Math. Log. Q..

[13]  Richard M. Karp,et al.  Complexity of Computation , 1974 .

[14]  J. Lynch Almost sure theories , 1980 .

[15]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[16]  Robert W. Ritchie,et al.  CLASSES OF PREDICTABLY COMPUTABLE FUNCTIONS , 1963 .

[17]  H. Scholz Review: Y. Bar-Hillel, Bolzano's Definition of Analytic Propositions , 1952 .

[18]  J. D. Monk,et al.  Mathematical Logic , 1976 .

[19]  Neil D. Jones,et al.  Turing machines and the spectra of first-order formulas , 1974, Journal of Symbolic Logic.

[20]  James F. Lynch,et al.  On sets of relations definable by addition , 1982, Journal of Symbolic Logic.

[21]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[22]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[23]  G. Asser Das Repräsentantenproblem im Prädikatenkalkül der ersten Stufe mit Identität , 1955 .