Phosphene induction and the generation of saccadic eye movements by striate cortex.

The purpose of this review is to critically examine phosphene induction and saccadic eye movement generation by electrical microstimulation of striate cortex (area V1) in humans and monkeys. The following issues are addressed: 1) Properties of electrical stimulation as they pertain to the activation of V1 elements; 2) the induction of phosphenes in sighted and blind human subjects elicited by electrical stimulation using various stimulation parameters and electrode types; 3) the induction of phosphenes with electrical microstimulation of V1 in monkeys; 4) the generation of saccadic eye movements with electrical microstimulation of V1 in monkeys; and 5) the tasks involved for the development of a cortical visual prosthesis for the blind. In this review it is concluded that electrical microstimulation of area V1 in trained monkeys can be used to accelerate the development of an effective prosthetic device for the blind.

[1]  C. Kufta,et al.  Visuotopic mapping through a multichannel stimulating implant in primate V1. , 2005, Journal of neurophysiology.

[2]  E. J. Tehovnik,et al.  Microstimulation of V1 input layers disrupts the selection and detection of visual targets by monkeys , 2004, The European journal of neuroscience.

[3]  Peter H Schiller,et al.  Microstimulation of V1 delays the execution of visually guided saccades , 2004, The European journal of neuroscience.

[4]  H. Spekreijse,et al.  Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. J. Tehovnik,et al.  Behavioural state affects saccades elicited electrically from neocortex , 2004, Neuroscience & Biobehavioral Reviews.

[6]  Peter H Schiller,et al.  Cortical inhibitory circuits in eye‐movement generation , 2003, The European journal of neuroscience.

[7]  David Bradley,et al.  A model for intracortical visual prosthesis research. , 2003, Artificial organs.

[8]  N. Logothetis,et al.  Simultaneous electrical microstimulation and fMRI in the macaque , 2003 .

[9]  Christina E Carvey,et al.  Behavioural state affects saccadic eye movements evoked by microstimulation of striate cortex , 2003, The European journal of neuroscience.

[10]  E. J. Tehovnik,et al.  Using ocular dominance to infer the depth of the visual input layers of V1 in behaving macaque monkey , 2003, Journal of Neuroscience Methods.

[11]  E. J. Tehovnik,et al.  Saccadic eye movements evoked by microstimulation of striate cortex , 2003, The European journal of neuroscience.

[12]  William T Newsome,et al.  Middle Temporal Visual Area Microstimulation Influences Veridical Judgments of Motion Direction , 2002, The Journal of Neuroscience.

[13]  T. Gawne,et al.  Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. , 2002, Journal of neurophysiology.

[14]  E. J. Tehovnik,et al.  Differential effects of laminar stimulation of V1 cortex on target selection by macaque monkeys , 2002, The European journal of neuroscience.

[15]  R. Wurtz,et al.  Signal transformations from cerebral cortex to superior colliculus for the generation of saccades , 2001, Vision Research.

[16]  Smirnakis Sm Siapas Ag,et al.  Studying networks of neurons: recordings with multiple, adjustable, chronically-implanted tetrodes in the awake macaque , 2001 .

[17]  Warren M. Grill,et al.  Selective Microstimulation of Central Nervous System Neurons , 2000, Annals of Biomedical Engineering.

[18]  S. C. Hong,et al.  Mapping of functional organization in human visual cortex , 2000, Neurology.

[19]  D. J. Warren,et al.  A neural interface for a cortical vision prosthesis , 1999, Vision Research.

[20]  F. Rattay,et al.  The basic mechanism for the electrical stimulation of the nervous system , 1999, Neuroscience.

[21]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[22]  J. Bullier,et al.  Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter I. Evidence from chronaxie measurements , 1998, Experimental Brain Research.

[23]  Marc A. Sommer,et al.  Electrically evoked saccades from the dorsomedial frontal cortex and frontal eye fields: a parametric evaluation reveals differences between areas , 1997, Experimental Brain Research.

[24]  E. J. Tehovnik,et al.  Excitability of neural elements within the rat corpus striatum , 1997, Journal of Neuroscience Methods.

[25]  C. Bruce,et al.  Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. , 1997, Journal of neurophysiology.

[26]  Jean Bullier,et al.  Spread of stimulating current in the cortical grey matter of rat visual cortex studied on a new in vitro slice preparation , 1996, Journal of Neuroscience Methods.

[27]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. , 1996, Brain : a journal of neurology.

[28]  E. J. Tehovnik Electrical stimulation of neural tissue to evoke behavioral responses , 1996, Journal of Neuroscience Methods.

[29]  Peter H Schiller,et al.  The ON and OFF channels of the mammalian visual system , 1995, Progress in Retinal and Eye Research.

[30]  W. B. Spatz,et al.  Morphology and connections of neurons in area 17 projecting to the extrastriate areas mt and 19DM and to the superior colliculus in the monkey Callithrix jacchus , 1995, The Journal of comparative neurology.

[31]  E. J. Tehovnik,et al.  Topographic Distribution of Fixation‐related Units in the Dorsomedial Frontal Cortex of the Rhesus Monkey , 1995, The European journal of neuroscience.

[32]  H. Yaginuma,et al.  Projections from the central cervical nucleus to the cerebellar nuclei in the rat, studied by anterograde axonal tracing , 1995, The Journal of comparative neurology.

[33]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[34]  G. Orban,et al.  Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. , 1994, Journal of neurophysiology.

[35]  Peter H. Schiller,et al.  The ON and OFF channels of the visual system , 1992, Trends in Neurosciences.

[36]  K. Horch,et al.  Mobility performance with a pixelized vision system , 1992, Vision Research.

[37]  K W Horch,et al.  Reading speed with a pixelized vision system. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[38]  M. Taussig The Nervous System , 1991 .

[39]  A. Peters,et al.  Organization of pyramidal neurons in area 17 of monkey visual cortex , 1991, The Journal of comparative neurology.

[40]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[41]  D.B. McCreery,et al.  Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation , 1990, IEEE Transactions on Biomedical Engineering.

[42]  William T. Newsome,et al.  Cortical microstimulation influences perceptual judgements of motion direction , 1990, Nature.

[43]  DH Hubel,et al.  Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  G. Loeb,et al.  Visual sensations produced by intracortical microstimulation of the human occipital cortex , 1990, Medical and Biological Engineering and Computing.

[45]  J. Yeomans Principles of Brain Stimulation , 1990 .

[46]  H Spekreijse,et al.  Topography and homogeneity of monkey VI studied through subdurally recorded pattern-evoked potentials , 1989, Visual Neuroscience.

[47]  D. Tolhurst The amount of information transmitted about contrast by neurones in the cat's visual cortex , 1989, Visual Neuroscience.

[48]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  J. Mcilwain Saccadic eye movements evoked by electrical stimulation of the cat's visual cortex , 1988, Visual Neuroscience.

[53]  J. Lund,et al.  Distribution of GABAergic neurons and axon terminals in the macaque striate cortex , 1987, The Journal of comparative neurology.

[54]  P. Milner,et al.  Behavioral measurement of axonal thresholds , 1986, Behavioural Brain Research.

[55]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[56]  J. Yeomans,et al.  Behaviorally measured refractory periods are lengthened by reducing electrode tip exposure or raising current. , 1985, Behavioral neuroscience.

[57]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[59]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[60]  H. Fields,et al.  Relations among threshold, spike height, electrode distance, and conduction velocity in electrical stimulation of certain medullospinal neurons. , 1984, Journal of neurophysiology.

[61]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  E. G. Keating,et al.  Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye fields , 1983, Brain Research.

[63]  D. C. West,et al.  Strength‐duration characteristics of myelinated and non‐myelinated bulbospinal axons in the cat spinal cord. , 1983, The Journal of physiology.

[64]  J. Macpherson,et al.  Corticospinal neurones of the supplementary motor area of monkeys , 1982, Experimental Brain Research.

[65]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[66]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[67]  J. Mcilwain Lateral spread of neural excitation during microstimulation in intermediate gray layer of cat's superior colliculus. , 1982, Journal of neurophysiology.

[68]  C. R. Michael,et al.  Columnar organization of color cells in monkey's striate cortex. , 1981, Journal of neurophysiology.

[69]  J. A. Movshon,et al.  The dependence of response amplitude and variance of cat visual cortical neurones on stimulus contrast , 1981, Experimental Brain Research.

[70]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[71]  J. Malpeli,et al.  Shock-induced inhibition in the lateral geniculate nucleus of the rhesus monkey , 1977, Brain Research.

[72]  G. Matthews Neural substrate for brain stimulation reward in the rat: cathodal and anodal strength-duration properties. , 1977, Journal of comparative and physiological psychology.

[73]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[74]  V. Mountcastle,et al.  Parietal lobe mechanisms for directed visual attention. , 1977, Journal of neurophysiology.

[75]  D. Hubel,et al.  Projection into the visual field of ocular dominance columns in macaque monkey , 1977, Brain Research.

[76]  Peter H. Schiller,et al.  The effect of superior colliculus ablation on saccades elicted by cortical stimulation , 1977, Brain Research.

[77]  A. Arnold,et al.  Further study on the excitation of pyramidal tract cells by intracortical microstimulation , 1976, Experimental Brain Research.

[78]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[79]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[80]  B L Finlay,et al.  Quantitative studies of single-cell properties in monkey striate cortex. IV. Corticotectal cells. , 1976, Journal of neurophysiology.

[81]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[82]  R. Wurtz,et al.  Enhancement of visual responses in monkey striate cortex and frontal eye fields. , 1976, Journal of neurophysiology.

[83]  M. H. Evans,et al.  Measurement of current spread from microelectrodes when stimulating within the nervous system , 1976, Experimental Brain Research.

[84]  C. Li,et al.  Excitability characteristics of the A- and C-fibers in a peripheral nerve , 1976, Experimental Neurology.

[85]  M. Mladejovsky,et al.  ‘Braille’ reading by a blind volunteer by visual cortex stimulation , 1976, Nature.

[86]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[87]  J. B. Ranck,et al.  Which elements are excited in electrical stimulation of mammalian central nervous system: A review , 1975, Brain Research.

[88]  E Jankowska,et al.  The mode of activation of pyramidal tract cells by intracortical stimuli. , 1975, The Journal of physiology.

[89]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[90]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[91]  W. Dobelle,et al.  Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind , 1974, The Journal of physiology.

[92]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[93]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[94]  D H Hubel,et al.  Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. , 1974, Brain research.

[95]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[96]  P Gouras,et al.  Opponent‐colour cells in different layers of foveal striate cortex , 1974, The Journal of physiology.

[97]  M. Mladejovsky,et al.  Artificial Vision for the Blind: Electrical Stimulation of Visual Cortex Offers Hope for a Functional Prosthesis , 1974, Science.

[98]  W. Roberts,et al.  Analysis of threshold currents during microstimulation of fibres in the spinal cord. , 1973, Acta physiologica Scandinavica.

[99]  D. Armstrong,et al.  The spatial organisation of climbing fibre branching in the cat cerebellum , 1973, Experimental Brain Research.

[100]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[101]  P. Schiller,et al.  The role of the monkey superior colliculus in eye movement and vision. , 1972, Investigative ophthalmology.

[102]  E. Jankowska,et al.  An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat , 1972, The Journal of physiology.

[103]  J. Tigges,et al.  Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri) , 1970, The Journal of comparative neurology.

[104]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[105]  W. D. Thompson,et al.  Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current. , 1968, Journal of neurophysiology.

[106]  Emilio Bizzi,et al.  Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys , 1968, Experimental Brain Research.

[107]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[108]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[109]  Brindley Gs,et al.  The visual sensations produced by electrical stimulation of the medial occipital cortex. , 1968, The Journal of physiology.

[110]  B. Cragg The density of synapses and neurones in the motor and visual areas of the cerebral cortex. , 1967, Journal of anatomy.

[111]  Mitchell Glickstein,et al.  NEURAL CIRCUITS INVOLVED IN VISUOMOTOR REACTION TIME IN MONKEYS , 1967 .

[112]  K. Krnjević,et al.  Nature of a cortical inhibitory process , 1966, The Journal of physiology.

[113]  K. Krnjević,et al.  An inhibitory process in the cerebral cortex , 1966, The Journal of physiology.

[114]  K. Krnjević,et al.  Pharmacology of cortical inhibition , 1966, The Journal of physiology.

[115]  R. Doty,et al.  CONDITIONED REFLEXES ELICITED BY ELECTRICAL STIMULATION OF THE BRAIN IN MACAQUES. , 1965, Journal of neurophysiology.

[116]  R. Porter,et al.  Focal stimulation of hypoglossal neurones in the cat , 1963, The Journal of physiology.

[117]  W. Penfield,et al.  THE BRAIN'S RECORD OF AUDITORY AND VISUAL EXPERIENCE. A FINAL SUMMARY AND DISCUSSION. , 1963, Brain : a journal of neurology.

[118]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[119]  D. Hebb,et al.  Visual perception approached by the method of stabilized images. , 1960, Canadian journal of psychology.

[120]  I H WAGMAN,et al.  Eye movements elicited by surface and depth stimulation of the frontal lobe of Macaque mulatta , 1958, The Journal of comparative neurology.

[121]  G. Beard The Cerebral Cortex of Man , 1951 .

[122]  John Edward Lennard-Jones,et al.  The determination of molecular orbitals , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[123]  A. Walker,et al.  OCULAR MOVEMENTS FROM THE OCCIPITAL LOBE IN THE MONKEY , 1940 .

[124]  E. Schäfer EXPERIMENTS ON THE ELECTRICAL EXCITATION OF THE VISUAL AREA OF THE CEREBRAL CORTEX IN THE MONKEY , 1888 .

[125]  K. E. Jones,et al.  A glass/silicon composite intracortical electrode array , 2006, Annals of Biomedical Engineering.

[126]  Richard A. Normann,et al.  Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system , 2006, Annals of Biomedical Engineering.

[127]  R. Vautin,et al.  Magnification factor and receptive field size in foveal striate cortex of the monkey , 2004, Experimental Brain Research.

[128]  R. Boch Behavioral modulation of neuronal activity in monkey striate cortex: excitation in the absence of active central fixation , 2004, Experimental Brain Research.

[129]  L. Weiskrantz,et al.  Impaired discrimination following polarisation of the striate cortex , 2004, Experimental Brain Research.

[130]  Peter H. Schiller,et al.  Stimulation-evoked saccades from the dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal eye fields and superior colliculus , 2004, Experimental Brain Research.

[131]  W. Newsome,et al.  Punctate chemical lesions of striate cortex in the macaque monkey: effect on visually guided saccades , 2004, Experimental Brain Research.

[132]  Edward J. Tehovnik,et al.  The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation , 2004, Experimental Brain Research.

[133]  V. Montero,et al.  The interneuronal nature of GABAergic neurons in the lateral geniculate nucleus of the rhesus monkey: a combined HRP and GABA-immunocytochemical study , 2004, Experimental Brain Research.

[134]  E. G. Keating,et al.  Disconnection of parietal and occipital access to the saccadic oculomotor system , 2004, Experimental Brain Research.

[135]  J. Graham,et al.  Some topographical connections of the striate cortex with subcortical structures in Macaca fascicularis , 2004, Experimental Brain Research.

[136]  William F. Agnew,et al.  The Effects of Prolonged Intracortical Microstimulation on the Excitability of Pyramidal Tract Neurons in the Cat , 2004, Annals of Biomedical Engineering.

[137]  Susan Schwartz,et al.  The action of γ-Aminobutyric acid on cortical neurones , 2004, Experimental Brain Research.

[138]  C. Ekerot The lateral reticular nucleus in the cat , 2004, Experimental Brain Research.

[139]  O. Oscarsson,et al.  The lateral reticular nucleus in the cat I. Mossy fibre distribution in cerebellar cortex , 2004, Experimental Brain Research.

[140]  E. J. Tehovnik,et al.  Microstimulation of macaque V1 disrupts target selection: effects of stimulation polarity , 2002, Experimental Brain Research.

[141]  P H Schiller,et al.  Look and see: how the brain moves your eyes about. , 2001, Progress in brain research.

[142]  E. Maynard,et al.  Visual prostheses. , 2001, Annual review of biomedical engineering.

[143]  Eric L. Schwartz,et al.  Computational Studies of the Spatial Architecture of Primate Visual Cortex , 1994 .

[144]  L. Hayman,et al.  Correspondence , 1992, Neuroradiology.

[145]  A. Peters Number of Neurons and Synapses in Primary Visual Cortex , 1987 .

[146]  R. Wurtz,et al.  Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. , 1985, Journal of neurophysiology.

[147]  Ronner Sf Prosthesis-related studies on visual cortex neurons. , 1982 .

[148]  R. Doty,et al.  An exploration of the ability of macaques to detect microstimulation of striate cortex. , 1980, Acta Neurobiologiae Experimentalis.

[149]  G. S. Brindley,et al.  Properties of Cortical Electrical Phosphenes , 1978 .

[150]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[151]  Giles S. Brindley,et al.  Sensory Effects of Electrical Stimulation of the Visual and Paravisual Cortex in Man , 1973 .

[152]  R. Doty,et al.  On Butterflies in the Brain , 1970 .

[153]  R. Doty,et al.  Electrical stimulation of the brain in behavioral context. , 1969, Annual review of psychology.

[154]  C. Sherrington,et al.  Observations on the physiology of the cerebral cortex of the anthropoid apes , 1904, Proceedings of the Royal Society of London.

[155]  C. Sherrington,et al.  Observations on the physiology of the cerebral cortex of some of the higher apes. (Preliminary communication.) , 1902, Proceedings of the Royal Society of London.