Depth Adaptive Zooming Visual Servoing for a Robot with a Zooming Camera

To solve the view visibility problem and keep the observed object in the field of view (FOV) during the visual servoing, a depth adaptive zooming visual servoing strategy for a manipulator robot with a zooming camera is proposed. Firstly, a zoom control mechanism is introduced into the robot visual servoing system. It can dynamically adjust the camera's field of view to keep all the feature points on the object in the field of view of the camera and get high object local resolution at the end of visual servoing. Secondly, an invariant visual servoing method is employed to control the robot to the desired position under the changing intrinsic parameters of the camera. Finally, a nonlinear depth adaptive estimation scheme in the invariant space using Lyapunov stability theory is proposed to estimate adaptively the depth of the image features on the object. Three kinds of robot 4DOF visual positioning simulation experiments are conducted. The simulation experiment results show that the proposed approach has higher positioning precision.

[1]  François Chaumette,et al.  Path planning in image space for robust visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Benedetto Allotta,et al.  Nonlinear controllability and stability analysis of adaptive image-based systems , 2001, IEEE Trans. Robotics Autom..

[3]  Koichi Hashimoto,et al.  Image-based visual servo using zoom mechanism , 2003, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[4]  Graziano Chesi,et al.  Visual Servoing Path Planning via Homogeneous Forms and LMI Optimizations , 2009, IEEE Transactions on Robotics.

[5]  William J. Wilson,et al.  Hybrid motion control and planning strategies for visual servoing , 2005, IEEE Transactions on Industrial Electronics.

[6]  Liu Hsu,et al.  Performing stable 2D adaptive visual positioning/tracking control without explicit depth measurement , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[7]  Jean-Michel Morel,et al.  ASIFT: An Algorithm for Fully Affine Invariant Comparison , 2011, Image Process. Line.

[8]  Fang Yongchun A survey of robot visual servoing , 2008 .

[9]  Moslem Kazemi,et al.  Path-Planning for Visual Servoing: A Review and Issues , 2010 .

[10]  E. Rivlin,et al.  Zoom tracking , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[11]  Kamal K. Gupta,et al.  Path planning with general end-effector constraints , 2007, Robotics Auton. Syst..

[12]  David W. Murray,et al.  A method of reactive zoom control from uncertainty in tracking , 2007, Comput. Vis. Image Underst..

[13]  Peter I. Corke,et al.  MATLAB toolboxes: robotics and vision for students and teachers , 2007, IEEE Robotics & Automation Magazine.

[14]  Selim Benhimane,et al.  Vision-based control with respect to planar and non-planar objects using a zooming camera , 2003 .

[15]  Guillaume Morel,et al.  Ensuring visibility in calibration-free path planning for image-based visual servoing , 2006, IEEE Transactions on Robotics.

[16]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[17]  Claudio Piciarelli,et al.  Stereo Localization Using Dual PTZ Cameras , 2009, CAIP.

[18]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[19]  Ezio Malis Visual servoing invariant to changes in camera-intrinsic parameters , 2004, IEEE Trans. Robotics Autom..

[20]  Axel Gräser,et al.  Visual Servoing with Adjustable Zoom Cameras , 2003 .