A model for ordinally constructing additive objective functions

Abstract We investigate a method for constructing piecewise-linear approximations of an additive (called also separable) objective function in n target variables from a few indifference points in two-dimensional planes. It is shown that (a) the data used by the method are ordinal, simplest, and minimal; (b) the limit ordinal preference is independent of the cardinal utility scale used in intermediate computations, since the accuracy of the approximations is estimated in the Hausdorff metric on the space of binary relations. The method is illustrated with an example of constructing an additive objective function of German economic policy in four target variables: Inflation, Unemployment, GNP Growth, and Increase in Public Debt. We provide some modifications of the model aimed at user's convenience.

[1]  W. Jevons Theory of Political Economy , 1965 .

[2]  Josef Gruber,et al.  Least squares estimation of quadratic preference functions for econometric decision models based on survey data , 1991 .

[3]  Leif Johansen,et al.  Establishing preference functions for macroeconomic decision models: Some observations on Ragnar Frisch's contributions , 1974 .

[4]  H. Houthakker The Present State of Consumption Theory , 1961 .

[5]  Paul A. Samuelson,et al.  The Problem of Integrability in Utility Theory , 1950 .

[6]  Philip E. Gill,et al.  Practical optimization , 1981 .

[7]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[8]  Ragnar Frisch,et al.  An Implementation System for Optimal National Economic Planning without Detailed Quantity Fixation from a Central Authority , 1964 .

[9]  Paul A. Samuelson,et al.  Probability, Utility, and the Independence Axiom , 1952 .

[10]  L. Robbins,et al.  An Essay on the Nature and Significance of Economic Science. , 1934 .

[11]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[12]  F. Wiser,et al.  The Theory of Value , 1892 .

[13]  Ragnar Frisch,et al.  A Complete Scheme for Computing all Direct and Cross Demand Elasticities in a Model with many Factors , 1959 .

[14]  Marjan W. Hofkes,et al.  Operationalizing a Macro-Economic Preference Function , 1991 .

[15]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[16]  Wassily Y. Leontief,et al.  A note on the interrelation of subsets of independent variables of a continuous function with continuous first derivatives , 1947 .

[17]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[18]  R. Duncan Luce,et al.  Two extensions of conjoint measurement , 1966 .

[19]  Léon Walras Éléments d'économie politique pure , 1889 .

[20]  M. Richter Revealed Preference Theory , 1966 .

[21]  R. Fletcher Practical Methods of Optimization , 1988 .

[22]  W. M. Gorman SEPARABLE UTILITY AND AGGREGATION , 1959 .

[23]  J. Tinbergen On the Theory of Economic Policy , 1954 .

[24]  John S. Chipman,et al.  Preferences, Utility, and Demand. , 1972 .

[25]  Jan Tinbergen,et al.  On the measurement of welfare , 1991 .

[26]  Andranik Tangian,et al.  Constructing a monotonic quadratic objective function in n variables from a few two-dimensional indifferences , 2001, Eur. J. Oper. Res..

[27]  M. Toda,et al.  The Experimental Determination of Indifference Curves , 1969 .

[28]  Peter P. Wakker Additive representation for equally spaced structures , 1991 .

[29]  A. Barten,et al.  Consumer Demand Functions under Conditions of Almost Additive Preferences , 1964 .

[30]  B. V. Praag,et al.  Ordinal and cardinal utility , 1991 .

[31]  John C. Stone,et al.  Integrability of the multiple-period equilibrium model part II , 1989 .

[32]  Ralph L. Keeney,et al.  Multiplicative Utility Functions , 1974, Oper. Res..

[33]  P. Wakker Additive Representations of Preferences: A New Foundation of Decision Analysis , 1988 .

[34]  Christophe Gonzales Additive Utility Without Solvability on All Components , 1997 .

[35]  R. Luce,et al.  Simultaneous conjoint measurement: A new type of fundamental measurement , 1964 .

[36]  P. Wakker Additive representations on rank-ordered sets: II. The topological approach , 1993 .

[37]  P. Fishburn Methods of Estimating Additive Utilities , 1967 .

[38]  H. Theil A Note on Certainty Equivalence in Dynamic Planning , 1957 .

[39]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[40]  J. Stone,et al.  Deriving a Utility Function For the U.S. Economy , 1988 .

[41]  Ragnar Frisch,et al.  Numerical determination of a quadratic preference function for use in macroeconomic programming , 1957 .

[42]  H. Houthakker Revealed Preference and the Utility Function , 1950 .

[43]  Andranik Tangian,et al.  Constructing a quasi-concave quadratic objective function from interviewing a decision maker , 2002, Eur. J. Oper. Res..

[44]  A. Sen,et al.  Choice, Welfare and Measurement , 1982 .

[45]  Paul A. Samuelson Maximum Principles in Analytical Economics , 1971 .

[46]  Wassily Leontief,et al.  Introduction to a Theory of the Internal Structure of Functional Relationships , 1947 .

[47]  Hermann Heinrich Gossen Gossen, Hermann Heinrich: Entwickelung der Gesetze des menschlichen Verkehrs, und der daraus fließenden Regeln für menschliches Handeln , 2019, Die 100 wichtigsten Werke der Ökonomie.

[48]  F. Ramsey The Foundations of Mathematics and Other Logical Essays , 2001 .

[49]  Jean-Yves Jaffray,et al.  On the extension of additive utilities to infinite sets , 1974 .

[50]  K. Menger,et al.  Grundsätze der Volkswirtschaftslehre , 1924 .

[51]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[52]  Henri Theil Optimal decision rules for government and industry , 1965 .

[53]  P. Wakker Additive Representations on Rank-Ordered Sets. I. The Algebraic Approach , 1991 .

[54]  D. Primont,et al.  Duality, Separability, and Functional Structure: Theory and Economic Applications , 1978 .

[55]  D. Scott Measurement structures and linear inequalities , 1964 .

[56]  Peter C. Fishburn,et al.  Continuous nontransitive additive conjoint measurement , 1990 .

[57]  A. H. Q. M. Merkies,et al.  The measurement of quadratic preference functions with small samples , 1982 .

[58]  G. Debreu Topological Methods in Cardinal Utility Theory , 1959 .

[59]  Wilhelm Blaschke,et al.  Geometrie der Gewebe , 1938 .

[60]  Rao C.r Essays on econometrics and planning , 1965 .

[61]  Patrick Suppes,et al.  MATHEMATICAL METHODS IN THE SOCIAL SCIENCES, 1959 , 1960 .

[62]  D. Krantz Conjoint measurement: The Luce-Tukey axiomatization and some extensions ☆ , 1964 .

[63]  Wilhelm Blaschke,et al.  Topologische Fragen der Differentialgeometrie. I , 1928 .

[64]  Charles Vlek,et al.  Utility, Probability, and Human Decision Making , 1975 .

[65]  Marcel K. Richter,et al.  Revelations of a gambler , 1978 .

[66]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[67]  Josef Gruber,et al.  Econometric Decision Models , 1983 .

[68]  W. Edwards,et al.  Decision Analysis and Behavioral Research , 1986 .

[69]  Alan Powell,et al.  A Complete System of Consumer Demand Equations for the Australian Economy Fitted by a Model of Additive Preferences , 1966 .

[70]  Kenneth J. Arrow,et al.  Economic Policy: Principles and Design. , 1958 .

[71]  Richard Ruggles Concepts, Sources, and Methods of United States National Income Accounts , 1952 .

[72]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[73]  Richard A. Silverman,et al.  Elementary real and complex analysis , 1973 .