Enumerative Counting Is Hard

Abstract An n-variable Boolean formula may have anywhere from 0 to 2n satisfying assignments. Can a polynomial-time machine, given such a formula, reduce this exponential number of possibilities to a small number of possibilities? We call such a machine an enumerator and prove that if there is a good polynomial-time enumerator for #P (i.e., one where for every Boolean formula f, the small set has at most O(|f|1−e) numbers), then P = NP = P# P and probabilistic polynomial time equals polynomial time. Furthermore, we show that #P polynomial-time Turing reduces to enumerating #P.

[1]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[2]  Janos Simon,et al.  On the Difference Between One and Many (Preliminary Version) , 1977, ICALP.

[3]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[4]  Amihood Amir,et al.  Polynomial Terse Sets , 1988, Inf. Comput..

[5]  Janos Simon On some central problems in computational complexity , 1975 .

[6]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[7]  Larry J. Stockmeyer,et al.  On Approximation Algorithms for #P , 1985, SIAM J. Comput..

[8]  Jin-Yi Cai,et al.  With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy , 1986, STOC '86.

[9]  Eric Allender,et al.  The Complexity of Sparse Sets in P , 1986, SCT.

[10]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[11]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[12]  László Babai,et al.  Random Oracles Separate PSPACE from the Polynomial-Time Hierarchy , 1987, Inf. Process. Lett..

[13]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[14]  John Gill,et al.  Computational Complexity of Probabilistic Turing Machines , 1977, SIAM J. Comput..

[15]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[16]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[17]  Dana Angluin,et al.  On Counting Problems and the Polynomial-Time Hierarchy , 1980, Theor. Comput. Sci..

[18]  C. Papadimitriou,et al.  Two remarks on the power of counting , 1983 .

[19]  Klaus W. Wagner,et al.  Some Observations on the Connection Between Counting an Recursion , 1986, Theor. Comput. Sci..

[20]  Uwe Schöning,et al.  Complexity and Structure , 1986, Lecture Notes in Computer Science.

[21]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.