Visual simulation of deformable models

Computer animations are an essential part of today’s visual production pipeline, for feature animated films and video games. By moving from static to dynamic scenes, immersion in virtual environments is greatly enhanced. Most of these animations however are concerning rigid or articulated bodies, and are generated manually by an artist or off-line. The interactive animation of deformable objects still is a challenging task, requiring high computational resources. Moreover, interactive environments for dressing up with virtual clothing or training surgeons on unaccustomed procedures pose higher requirements on fidelity as simple plausibility, which we denote by visual simulation. This thesis presents a framework for the visual simulation of deformable objects, which is fast enough to be integrated into virtual environments. The modelling of these objects is based on continuum mechanics, yielding a better accuracy than the techniques commonly used in graphics. An important aspect of modelling are material laws. Measurements have shown viscoelasticity to be a distinctive characteristic of biological soft tissue, the hysteresis of cloth is a well known observation in standard Kawabata experiments. We introduce the modelling of viscoelasticity to graphics, which integrates smoothly into the continuum dynamical setting, and present the first interactive implementation of a viscoelastic model. Chapter 2 introduces the basic concepts of this approach, which results in a partial differential equation; the following chapter discusses the numerical methods we employ for its solution. We use the method of lines to solve this equation. Hence, as a first step the equation is discretised in space using finite elements on a tetrahedral mesh of the object. This reduces the problem to the solution of an ordinary differential equation. The efficient time integration of this equation is vital for the performance of the application. The implicit methods we introduce for this task are well suited for two-dimensional structures such as cloth as well as for three-dimensional soft objects. Implicit integration requires the solution of large systems of equations. Hence, the efficiency of these schemes again critically depends on the linear solver; we propose to use several methods new to the field. Two applications are presented in chapter 4 and 5 respectively, a core for cloth simulation using a simpler space discretization method, and a soft object simulator, assembling all the techniques we described in a set of flexible building blocks. The latter application allows the real-time simulation of soft objects composed of up to several thousand tetrahedral elements; the blocks can be configured to trade execution speed for approximation accuracy and hence to match the requirements of the actual area of usage.

[1]  Markus Gross,et al.  Simulating facial surgery using finite element models , 1996 .

[2]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[3]  Markus H. Gross,et al.  A state machine for real-time cutting of tetrahedral meshes , 2004, Graph. Model..

[4]  Wolfgang Straßer,et al.  Corotational Simulation of Deformable Solids , 2004, WSCG.

[5]  Markus Wacker,et al.  Virtuelle Textilien in der Graphischen Datenverarbeitung , 2004 .

[6]  Mathieu Desbrun,et al.  Interactive multiresolution animation of deformable models , 1999, Computer Animation and Simulation.

[7]  Nadia Magnenat-Thalmann,et al.  Implementing fast cloth simulation with collision response , 2000, Proceedings Computer Graphics International 2000.

[8]  K. Polthier Computational Aspects of Discrete Minimal Surfaces , 2002 .

[9]  Stephane Cotin,et al.  A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation , 1999, Proceedings Computer Animation 1999.

[10]  M. Bro-Nielsen,et al.  Finite element modeling in surgery simulation , 1998, Proc. IEEE.

[11]  Akihiro Takatsu,et al.  Virtual Surgery System Using Deformable Organ Models and Force Feedback Systems with Three Fingers , 1998, MICCAI.

[12]  Werner C. Rheinboldt,et al.  Methods for solving systems of nonlinear equations , 1987 .

[13]  Nadia Magnenat-Thalmann,et al.  Comparing efficiency of integration methods for cloth simulation , 2001, Proceedings. Computer Graphics International 2001.

[14]  B. Neisius,et al.  ‘ Karlsruhe Endoscopic Surgery Trainer ’ A ‘ Virtual Reality ’ based Training System for Minimally Invasive Surgery , 1996 .

[15]  W. Hackbusch Iterative Lösung großer schwachbesetzter Gleichungssysteme , 1991 .

[16]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[17]  Daniel Thalmann,et al.  Simulation of object and human skin formations in a grasping task , 1989, SIGGRAPH.

[18]  Herve Delingette,et al.  Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation , 1999, IEEE Trans. Vis. Comput. Graph..

[19]  James Demmel,et al.  An Asynchronous Parallel Supernodal Algorithm for Sparse Gaussian Elimination , 1997, SIAM J. Matrix Anal. Appl..

[20]  Leif Kobbelt,et al.  Using Simulated Annealing to Obtain Good Nodal Approximations of Deformable Bodies , 1995 .

[21]  Wolfgang Straßer,et al.  Soft Tissue Simulation Based on Measured Data , 2003, MICCAI.

[22]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[23]  Gábor Székely,et al.  Inverse Finite Element Characterization of Soft Tissues , 2001, MICCAI.

[24]  Mathieu Desbrun,et al.  Interactive Animation of Structured Deformable Objects , 1999, Graphics Interface.

[25]  N. J. Avis,et al.  Determination of the Mechanical Properties of Soft Human Tissues through Aspiration Experiments , 2003, MICCAI.

[26]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[27]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[28]  Jerry Weil,et al.  The synthesis of cloth objects , 1986, SIGGRAPH.

[29]  G. Faber Über stetige Funktionen , 1908 .

[30]  O. C. Zienkiewicz,et al.  A numerical method of visco-elastic stress analysis , 1968 .

[31]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[32]  Jos Stam,et al.  Stochastic Dynamics: Simulating the Effects of Turbulence on Flexible Structures , 1997 .

[33]  J. Edward Colgate,et al.  Factors affecting the Z-Width of a haptic display , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[34]  Evgeny Gladilin,et al.  Biomechanical Modeling of Soft Tissue and Facial Expressions for Craniofacial Surgery Planning , 2003 .

[35]  Wolfgang Straßer,et al.  Deriving a Particle System from Continuum Mechanics for the Animation of Deformable Objects , 2003, IEEE Trans. Vis. Comput. Graph..

[36]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[37]  Norman I. Badler,et al.  Animating facial expressions , 1981, SIGGRAPH '81.

[38]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[39]  Timothy G. Clapp,et al.  Finite-element modeling and control of flexible fabric parts , 1996, IEEE Computer Graphics and Applications.

[40]  Hwan-Gue Cho,et al.  Real-time Animation Technique for Flexible and Thin Objects , 2000, WSCG.

[41]  Stefan Kimmerle,et al.  Hierarchical Techniques in Collision Detection for Cloth Animation , 2003, WSCG.

[42]  Daniel Thalmann,et al.  Dressing animated synthetic actors with complex deformable clothes , 1992, SIGGRAPH.

[43]  Oussama Khatib,et al.  The haptic display of complex graphical environments , 1997, SIGGRAPH.

[44]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[45]  Willem Hundsdorfer,et al.  A Second-Order Rosenbrock Method Applied to Photochemical Dispersion Problems , 1999, SIAM J. Sci. Comput..

[46]  W. Gibbs,et al.  Finite element methods , 2017, Graduate Studies in Mathematics.

[47]  川端 季雄,et al.  The standardization and analysis of hand evaluation. , 1975 .

[48]  Yiorgos Chrysanthou,et al.  Fast Cloth Animation on Walking Avatars , 2001, Comput. Graph. Forum.

[49]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[50]  Nadia Magnenat-Thalmann,et al.  Versatile and efficient techniques for simulating cloth and other deformable objects , 1995, SIGGRAPH.

[51]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[52]  Tom Duff,et al.  Matrix animation and polar decomposition , 1992 .

[53]  Wolfgang Straßer,et al.  Interactive physically based solid dynamics , 2003, SCA '03.

[54]  Joel Brown,et al.  Spring: a general framework for collaborative, real-time surgical simulation. , 2002, Studies in health technology and informatics.

[55]  Hervé Delingette,et al.  Nonlinear and anisotropic elastic soft tissue models for medical simulation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[56]  Dirk Bartz,et al.  Advanced Virtual Medicine: Techniques and Applications for Virtual Endoscopy , 2002 .

[57]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[58]  Reinhard Männer,et al.  Biomechanical Simulation of the Vitreous Humor in the Eye Using and Enhanced ChainMail Algorithm , 1998, MICCAI.

[59]  Kenneth I. Joy,et al.  Free-form deformations with lattices of arbitrary topology , 1996, SIGGRAPH.

[60]  Markus H. Gross,et al.  Emotion Editing using Finite Elements , 1998, Comput. Graph. Forum.

[61]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[62]  Thanh Giang,et al.  Evaluating the visual fidelity of physically based animations , 2003, ACM Trans. Graph..

[63]  M. Ottensmeyer,et al.  TeMPeST I-D: An instrument for measuring solid organ soft tissue properties , 2002 .

[64]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[65]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[66]  Olaf Etzmuß Animation of surfaces with applications to cloth modelling , 2002 .

[67]  Peter Niederer,et al.  Virtual Reality-Based Simulation of Endoscopic Surgery , 2000, Presence: Teleoperators & Virtual Environments.

[68]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[69]  SimulationHervé Delingetteinria Towards Realistic Soft Tissue Modeling in Medical , 1997 .

[70]  Harry Yserentant,et al.  Hierarchical bases , 1992 .

[71]  Jeremy G. Siek,et al.  The Matrix Template Library: generic components for high-performance scientific computing , 1999, Comput. Sci. Eng..

[72]  John Kenneth Salisbury,et al.  Haptic Rendering: Introductory Concepts , 2004, IEEE Computer Graphics and Applications.

[73]  Mark J. Kilgard,et al.  GDC 2000 : Advanced OpenGL A Practical and Robust Bump-mapping Game Development Technique for Today ’ s GPUs 1 A Practical and Robust Bump-mapping Technique for Today ’ s GPUs , 2000 .

[74]  T. Steihaug,et al.  An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations , 1979 .

[75]  Alex Pentland,et al.  Good vibrations: modal dynamics for graphics and animation , 1989, SIGGRAPH.

[76]  Doug L. James,et al.  Precomputing interactive dynamic deformable scenes , 2003, ACM Trans. Graph..

[77]  Kwang-Jin Choi,et al.  Stable but responsive cloth , 2002, SIGGRAPH Courses.

[78]  Allen Van Gelder,et al.  Approximate Simulation of Elastic Membranes by Triangulated Spring Meshes , 1998, J. Graphics, GPU, & Game Tools.

[79]  Hervé Delingette,et al.  Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation , 2002, Comput. Animat. Virtual Worlds.

[80]  Dinesh K. Pai,et al.  DyRT: dynamic response textures for real time deformation simulation with graphics hardware , 2002, SIGGRAPH.

[81]  Jean Louchet,et al.  Evolutionary identification of cloth animation models , 1995 .

[82]  John C. Platt,et al.  Constraints methods for flexible models , 1988, SIGGRAPH.

[83]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[84]  Ralf Sarlette,et al.  Virtual Try-On , 2004, Informatik-Spektrum.

[85]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[86]  David E. Breen,et al.  Cloth modeling and animation , 2000 .

[87]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[88]  Hervé Delingette,et al.  Real-Time Large Displacement Elasticity for Surgery Simulation: Non-linear Tensor-Mass Model , 2000, MICCAI.

[89]  Ralf Sarlette,et al.  Cloth Animation and Rendering , 2002, Eurographics.

[90]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[91]  Stefan Kimmerle,et al.  A Cloth Modelling System for Animated Characters , 2002 .

[92]  Alan H. Barr,et al.  Global and local deformations of solid primitives , 1984, SIGGRAPH.

[93]  Frank Tendick,et al.  Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes , 2001, Comput. Graph. Forum.

[94]  David Zeltzer,et al.  Pump it up: computer animation of a biomechanically based model of muscle using the finite element method , 1992, SIGGRAPH.

[95]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[96]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[97]  Wolfgang Straßer,et al.  A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[98]  Uri M. Ascher,et al.  On the modified conjugate gradient method in cloth simulation , 2003, The Visual Computer.

[99]  Daniel Thalmann,et al.  Deformable Tissue Parameterized by Properties of Real Biological Tissue , 2003, IS4TH.

[100]  David E. Breen,et al.  Predicting the drape of woven cloth using interacting particles , 1994, SIGGRAPH.

[101]  Petros Faloutsos,et al.  Dynamic Free-Form Deformations for Animation Synthesis , 1997, IEEE Trans. Vis. Comput. Graph..

[102]  Olaf Etzmuß,et al.  A High Performance Solver for the Animation of Deformable Objects using Advanced Numerical Methods , 2001, Comput. Graph. Forum.

[103]  Demetri Terzopoulos,et al.  Physically based models with rigid and deformable components , 1988, IEEE Computer Graphics and Applications.

[104]  W. Ames Mathematics in Science and Engineering , 1999 .

[105]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[106]  R Kikinis,et al.  Deformable modeling of facial tissue for craniofacial surgery simulation. , 1998, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[107]  Assyr Abdulle,et al.  Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.

[108]  Bernd Eberhardt,et al.  Implicit-Explicit Schemes for Fast Animation with Particle Systems , 2000, Computer Animation and Simulation.

[109]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[110]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[111]  Alf Gerisch,et al.  Operator splitting and approximate factorization for taxis-diffusion-reaction models , 2002 .

[112]  Nicholas J. Higham,et al.  Fast Polar Decomposition of an Arbitrary Matrix , 1990, SIAM J. Sci. Comput..

[113]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[114]  S. Eisenstat Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[115]  Blake Hannaford,et al.  Computer-controlled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics. , 2002, Studies in health technology and informatics.

[116]  B. Eberhardt,et al.  A particle system approach to knitted textiles , 1999, Comput. Graph..

[117]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[118]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[119]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[120]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[121]  Hans Rudolf Schwarz,et al.  Finite Element Methods , 1988 .

[122]  Stéphane Cotin,et al.  Truth Cube: Establishing Physical Standards for Real Time Soft Tissue Simulation , 2001 .

[123]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[124]  Demetri Terzopoulos,et al.  Physically-based facial modelling, analysis, and animation , 1990, Comput. Animat. Virtual Worlds.

[125]  Wolfgang Straßer,et al.  Analysis of numerical methods for the simulation of deformable models , 2003, The Visual Computer.

[126]  Sabine Coquillart,et al.  Extended free-form deformation: a sculpturing tool for 3D geometric modeling , 1990, SIGGRAPH.

[127]  Gábor Székely,et al.  Modelling of soft tissue deformation for laparoscopic surgery simulation , 2000, Medical Image Anal..

[128]  Z. Popovic,et al.  Interactive skeleton-driven dynamic deformations , 2002, ACM Trans. Graph..

[129]  Teodor M. Atanackovic,et al.  Theory of elasticity for scientists and engineers , 2000 .

[130]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[131]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[132]  Courtenay T. Vaughan,et al.  Efficient Polynomial Preconditioning for the Conjugate Gradient Method , 1990, SIAM J. Sci. Comput..

[133]  Steve Capell,et al.  Interactive skeleton-driven dynamic deformations , 2002, ACM Trans. Graph..

[134]  S. F. Frisken-Gibson Using linked volumes to model object collisions, deformation, cutting, carving, and joining , 1999 .

[135]  B. D. Veubeke,et al.  The dynamics of flexible bodies , 1976 .

[136]  John Kenneth Salisbury,et al.  A constraint-based god-object method for haptic display , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[137]  Evgeny Gladilin,et al.  Finite-Element Simulation of Soft Tissue Deformation , 2000 .

[138]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[139]  Nadia Magnenat-Thalmann,et al.  Made-to-Measure Technologies for an Online Clothing Store , 2003, IEEE Computer Graphics and Applications.

[140]  Wolfgang Straßer,et al.  Interactive cloth simulation in virtual environments , 2003, IEEE Virtual Reality, 2003. Proceedings..

[141]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[142]  Wolfgang Straßer,et al.  A fast, flexible, particle-system model for cloth draping , 1996, IEEE Computer Graphics and Applications.

[143]  P. Deuflhard,et al.  A NONLINEAR ELASTIC SOFT TISSUE MODEL FOR CRANIOFACIAL SURGERY SIMULATIONS , 2002 .

[144]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[145]  G. Buess,et al.  Independent testing of soft tissue visco-elasticity using indentation and rotary shear deformations. , 2003, Studies in health technology and informatics.

[146]  Brian Mirtich,et al.  A Survey of Deformable Modeling in Computer Graphics , 1997 .

[147]  R. Sinkus,et al.  High-resolution tensor MR elastography for breast tumour detection. , 2000, Physics in medicine and biology.

[148]  H. Maas,et al.  Noninvasive measurement of elastic properties of living tissue , 1999, 1999 European Control Conference (ECC).

[149]  Roland Christoph Hutter Total hourglass control - eine robuste FE-Methode zur Simulation von weichen Geweben , 1999 .

[150]  Cynthia Bruyns,et al.  Measurements of Soft-Tissue Mechanical Properties to Support Development of a Physically Based Virtual Animal Model , 2002, MICCAI.