The neglected pillar of material computation

Many novel forms of computational material have been suggested, from using slime moulds to solve graph searching problems, to using packaging foam to solve differential equations. I argue that attempting to force such novel approaches into the conventional Universal Turing computational framework will provide neither insights into theoretical questions of computation, nor more powerful computational machines. Instead, we should be investigating matter from the perspective of its natural computational capabilities. I also argue that we should investigate nonbiological substrates, since these are less complex in that they have not been tuned by evolution to have their particular properties. Only then we will understand both aspects of computation (logical and physical) required to understand the computation occurring in biological systems.

[1]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[2]  Julian Francis Miller,et al.  Evolution in materio: a real-time robot controller in liquid crystal , 2005, 2005 NASA/DoD Conference on Evolvable Hardware (EH'05).

[3]  Jonathan Timmis,et al.  In Silico Immunology , 2007 .

[4]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[5]  Christof Teuscher,et al.  From Utopian to Genuine Unconventional Computers , 2006 .

[6]  CERN,et al.  Universal Limits on Computation , 2004 .

[7]  Julian Francis Miller,et al.  Evolution in materio: looking beyond the silicon box , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[8]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[9]  P. Fromherz,et al.  A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. , 1991, Science.

[10]  Julian Francis Miller,et al.  Evolution in Materio: Exploiting the Physics of Materials for Computation , 2008, Int. J. Unconv. Comput..

[11]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[12]  Peter Wegner,et al.  Why interaction is more powerful than algorithms , 1997, CACM.

[13]  Thomas J. Naughton,et al.  Implementations of a Model of Physical Sorting , 2008, Int. J. Unconv. Comput..

[14]  A. Whitaker The Fabric of Reality , 2001 .

[15]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[16]  Hans Jürgen Prömel,et al.  The Steiner Tree Problem , 2002 .

[17]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[18]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[19]  Susan Stepney,et al.  Journeys in non-classical computation I: A grand challenge for computing research , 2005, Parallel Algorithms Appl..

[20]  W. Miehle Link-Length Minimization in Networks , 1958 .

[21]  J. Ziegler,et al.  Artificial Chemistries-A Review , 2001 .

[22]  Lev B. Levitin,et al.  Thermodynamic Cost of Reversible Computing , 2006, 2006 IEEE International Symposium on Information Theory.

[23]  R. Birge Protein-Based Computers , 1995 .

[24]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[25]  Robert R. Birge,et al.  Protein-based optical computing and memories , 1992, Computer.

[26]  Inman Harvey,et al.  Fourth European Conference on Artificial Life , 1997 .

[27]  Klaus-Peter Zauner,et al.  Noise as a Computational Resource , 2006, Int. J. Unconv. Comput..

[28]  Julian Francis Miller,et al.  Evolution in materio: a tone discriminator in liquid crystal , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[29]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[30]  Susan Stepney,et al.  Non-Classical Hypercomputation , 2009, Int. J. Unconv. Comput..

[31]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[32]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[33]  Gavan Lintern,et al.  Dynamic patterns: The self-organization of brain and behavior , 1997, Complex.

[34]  Klaus-Peter Zauner,et al.  Robot control with biological cells , 2007, Biosyst..

[35]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[36]  G. Cowan,et al.  Complexity Metaphors, Models, and Reality , 1994 .

[37]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[38]  Klaus-Peter Zauner,et al.  Parallel Computing with DNA: Toward the Anti-Universal Machine , 1996, PPSN.

[39]  D. E. Goldberg,et al.  Optimization and Machine Learning , 2022 .

[40]  A. Opstal Dynamic Patterns: The Self-Organization of Brain and Behavior , 1995 .

[41]  Andrew Adamatzky,et al.  Experimental logical gates in a reaction-diffusion medium: the XOR gate and beyond. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  F. Dyson Time without end: Physics and biology in an open universe , 1979 .

[43]  William M. Stevens,et al.  A Kinematic Turing Machine , 2009, Int. J. Unconv. Comput..

[44]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[45]  Susan Stepney,et al.  Journeys in non-classical computation II: initial journeys and waypoints , 2006, Int. J. Parallel Emergent Distributed Syst..

[46]  Doron Swade,et al.  The Cogwheel Brain : Charles Babbage and the Quest to Build the First Computer , 2001 .

[47]  Daniel L. McCue,et al.  A case for document management functions on the Web , 1997, CACM.

[48]  Tetsuya Asai,et al.  Reaction-diffusion computers , 2005 .

[49]  Craig A. Shue,et al.  "Empty space" computes: the evolution of an unconventional supercomputer , 2006, CF '06.

[50]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[51]  James P. Crutchfield,et al.  Dynamics, computation, and the “edge of chaos”: a re-examination , 1993, adap-org/9306003.