Bilateral controllers for teleoperated percutaneous interventions : evaluation and improvements

This paper presents two teleoperation control schemes developed in the context of percutaneous procedures in interventional radiology. The teleoperation task is characterized by a nonlinear interaction with the environment. The whole force feedback teleoperation structure is modeled to derive a practical, stable and transparent force feedback. The proposed control approach is based on the adaptation of standard force feedback teleoperation controllers. Position-position and force-position structures are improved by local compensation loops that include an a priori knowledge of the interactions between the slave robot and the environment made of soft tissues. This contribution allows to improve position tracking capabilities in spite of the nonlinearity of the interaction

[1]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1989 .

[2]  Jean-Jacques E. Slotine,et al.  Stable Adaptive Teleoperation , 1990, 1990 American Control Conference.

[3]  Blake Hannaford,et al.  Stable teleoperation with time-domain passivity control , 2002, IEEE Transactions on Robotics and Automation.

[4]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[5]  Dale A. Lawrence Stability and transparency in bilateral teleoperation , 1993, IEEE Trans. Robotics Autom..

[6]  Jacques Marescaux,et al.  Transatlantic robot-assisted telesurgery , 2001, Nature.

[7]  Yulun Wang,et al.  Robotic surgery - the transatlantic case , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[8]  Luc Soler,et al.  A new robotic system for CT-guided percutaneous procedures with haptic feedback , 2004, CARS.

[9]  Bruce A. Francis,et al.  Bilateral controller for teleoperators with time delay via μ-synthesis , 1995, IEEE Trans. Robotics Autom..

[10]  Alana Sherman,et al.  Bilateral controller design for telemanipulation in soft environments , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  Tsuneo Yoshikawa,et al.  Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment , 1994, IEEE Trans. Robotics Autom..

[12]  Homayoon Kazerooni,et al.  The dynamics and control of a haptic interface device , 1994, IEEE Trans. Robotics Autom..

[13]  Akhil J. Madhani,et al.  Design of teleoperated surgical instruments for minimally invasive surgery , 1998 .

[14]  Philippe Cinquin,et al.  A new robot architecture for tele-echography , 2003, IEEE Trans. Robotics Autom..

[15]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[16]  Luc Soler,et al.  IN VIVO STUDY OF FORCES DURING NEEDLE INSERTIONS , 2004 .

[17]  Blake Hannaford,et al.  Stable teleoperation with time-domain passivity control , 2004, IEEE Trans. Robotics Autom..

[18]  Septimiu E. Salcudean,et al.  Teleoperation controller design using H∞-optimization with application to motion-scaling , 1996, IEEE Trans. Control. Syst. Technol..

[19]  R. C. Goertz,et al.  ELECTRONICALLY CONTROLLED MANIPULATOR , 1954 .

[20]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[21]  Mahdi Tavakoli,et al.  A force reflective master-slave system for minimally invasive surgery , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[22]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[23]  Blake Hannaford,et al.  A design framework for teleoperators with kinesthetic feedback , 1989, IEEE Trans. Robotics Autom..

[24]  T. B. Sheridan,et al.  MIT research in telerobotics , 1987 .

[25]  R. W. Daniel,et al.  Fundamental Limits of Performance for Force Reflecting Teleoperation , 1998, Int. J. Robotics Res..