Engineering Sciences (Aerospace Engineering)

[1]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[2]  Zoubin Ghahramani,et al.  Unsupervised learning of sensory-motor primitives , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[3]  A. Isidori Nonlinear Control Systems , 1985 .

[4]  A E Engin,et al.  On the biomechanics of human shoulder complex--I. Kinematics for determination of the shoulder complex sinus. , 1987, Journal of biomechanics.

[5]  Floyd B. Hanson,et al.  Filtering approximation using systematic perturbations of a discrete-time stochastic dynamical system [groundwater pollutant remediation] , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[6]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[7]  Y. Phillis Estimation and control of systems with unknown covariance and multiplicative noise , 1989, 26th IEEE Conference on Decision and Control.

[8]  Kenji Doya,et al.  Temporal Difference Learning in Continuous Time and Space , 1995, NIPS.

[9]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[10]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[11]  N. A. Bernstein Dexterity and Its Development , 1996 .

[12]  BRIAN A. Garner,et al.  A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset. , 1999, Computer methods in biomechanics and biomedical engineering.

[13]  Emanuel Todorov,et al.  Stochastic Optimal Control and Estimation Methods Adapted to the Noise Characteristics of the Sensorimotor System , 2005, Neural Computation.

[14]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[15]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  F A Mussa-Ivaldi,et al.  Adaptive representation of dynamics during learning of a motor task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[18]  M. Pandy,et al.  Dynamic optimization of human walking. , 2001, Journal of biomechanical engineering.

[19]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[20]  Zoubin Ghahramani,et al.  Computational motor control , 2004 .

[21]  M. Krstić,et al.  Stochastic nonlinear stabilization—I: a backstepping design , 1997 .

[22]  Michael A. Arbib,et al.  A computational description of the organization of human reaching and prehension , 1992 .

[23]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[24]  Weiwei Li,et al.  Hierarchical Feedback and Learning for Multi-joint Arm Movement Control , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[25]  F. Thau On the inverse optimum control problem for a class of nonlinear autonomous systems , 1967, IEEE Transactions on Automatic Control.

[26]  Rein Luus,et al.  Iterative dynamic programming , 2019, Iterative Dynamic Programming.

[27]  Rieko Osu,et al.  Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory , 2001, Neural Networks.

[28]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[29]  Emanuel Todorov,et al.  From task parameters to motor synergies: A hierarchical framework for approximately optimal control of redundant manipulators , 2005 .

[30]  Andrew Y. Ng,et al.  Pharmacokinetics of a novel formulation of ivermectin after administration to goats , 2000, ICML.

[31]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[32]  M. Pandy,et al.  The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models , 2000, Computer methods in biomechanics and biomedical engineering.

[33]  Fuwen Yang,et al.  Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises , 2002, IEEE Trans. Autom. Control..

[34]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  Domenico D'Alessandro,et al.  Discrete-Time Optimal Control with Control-Dependent Noise and Generalized Riccati Difference Equations , 1998, Autom..

[36]  D. Wolpert Computational approaches to motor control , 1997, Trends in Cognitive Sciences.

[37]  Y. Phillis Controller design of systems with multiplicative noise , 1985 .

[38]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[39]  D. Kleinman,et al.  Optimal stationary control of linear systems with control-dependent noise , 1969 .

[40]  R A Abrams,et al.  Optimality in human motor performance: ideal control of rapid aimed movements. , 1988, Psychological review.

[41]  Michael I. Jordan,et al.  Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. , 1998, Journal of neurophysiology.

[42]  Yoshio Niho,et al.  A Solution to the Inverse Problem of Optimal Control: A Note , 1978 .

[43]  Duan Li,et al.  A Globally Convergent and Efficient Method for Unconstrained Discrete-Time Optimal Control , 2002, J. Glob. Optim..

[44]  E. Todorov,et al.  Estimation and control of systems with multiplicative noise via linear matrix inequalities , 2005, Proceedings of the 2005, American Control Conference, 2005..

[45]  Zhiwei Luo,et al.  On the trajectory formation of the human arm constrained by the external environment , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[46]  P Herberts,et al.  Biomechanical model of the human shoulder--I. Elements. , 1987, Journal of biomechanics.

[47]  E. Todorov,et al.  A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[48]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[49]  Cheng-Liang Chen,et al.  Numerical solution of time-delayed optimal control problems by iterative dynamic programming , 2000 .

[50]  Emanuel Todorov,et al.  Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems , 2004, ICINCO.

[51]  P. McLane Optimal stochastic control of linear systems with state- and control-dependent disturbances , 1971 .

[52]  M G Pandy,et al.  Static and dynamic optimization solutions for gait are practically equivalent. , 2001, Journal of biomechanics.

[53]  P. Morasso Spatial control of arm movements , 2004, Experimental Brain Research.

[54]  A.D. Kuo,et al.  An optimal control model for analyzing human postural balance , 1995, IEEE Transactions on Biomedical Engineering.

[55]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[56]  G. E. Loeb,et al.  A hierarchical foundation for models of sensorimotor control , 1999, Experimental Brain Research.

[57]  Kenji Doya,et al.  Reinforcement Learning in Continuous Time and Space , 2000, Neural Computation.

[58]  F.C.T. van der Helm,et al.  A finite element musculoskeletal model of the shoulder mechanism. , 1994 .

[59]  John R. Beaumont,et al.  Large-Scale Systems: Modeling and Control , 1983 .

[60]  Gregor Schöner,et al.  The uncontrolled manifold concept: identifying control variables for a functional task , 1999, Experimental Brain Research.

[61]  B. Anderson,et al.  Nonlinear regulator theory and an inverse optimal control problem , 1973 .

[62]  Victor M. Becerra,et al.  Optimal control of a class of discrete-continuous non-linear systems - decomposition and hierarchical structure , 2001, Autom..

[63]  Robert R. Bitmead,et al.  Iterative Control Design Approaches 1 , 1993 .

[64]  Robert E. Skelton,et al.  Linear systems with finite signal-to-noise ratios: a robustness approach , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[65]  A. Bensoussan Stochastic Control of Partially Observable Systems , 1992 .

[66]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[67]  P. Whittle Risk-Sensitive Optimal Control , 1990 .

[68]  Andris Freivalds,et al.  Biomechanics of the Upper Limbs: Mechanics, Modelling and Musculoskeletal Injuries , 2004 .

[69]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[70]  Emanuel Todorov,et al.  Optimal control methods suitable for biomechanical systems , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[71]  WALTER Maurel,et al.  A Case Study on Human Upper Limb Modelling for Dynamic Simulation. , 1999, Computer methods in biomechanics and biomedical engineering.

[72]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[73]  M. Krstić,et al.  Inverse optimal design of input-to-state stabilizing nonlinear controllers , 1998, IEEE Trans. Autom. Control..

[74]  L. Ghaoui State-feedback control of systems with multiplicative noise via linear matrix inequalities , 1995 .

[75]  Emanuel Todorov,et al.  Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system , 2007, Int. J. Control.

[76]  Nancy M. Amato,et al.  A generalized framework for interactive dynamic simulation for multirigid bodies , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[77]  G E Loeb,et al.  Understanding sensorimotor feedback through optimal control. , 1990, Cold Spring Harbor symposia on quantitative biology.

[78]  Michael I. Jordan,et al.  A Minimal Intervention Principle for Coordinated Movement , 2002, NIPS.

[79]  M. Kawato,et al.  Formation and control of optimal trajectory in human multijoint arm movement , 1989, Biological Cybernetics.

[80]  Robert E. Skelton,et al.  State estimation with finite signal-to-noise models , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[81]  Robert E. Skelton,et al.  State feedback covariance control for linear finite signal-to-noise ratio models , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[82]  N. Hogan An organizing principle for a class of voluntary movements , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  Y Uno,et al.  Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. , 1999, Journal of neurophysiology.

[84]  Yunying Mao,et al.  The optimal feedback control of the linear-quadratic control problem with a control inequality constraint , 2001 .

[85]  Andrew E. B. Lim,et al.  Linear-quadratic Optimal Control with Integral Quadratic Constraints , 1999 .

[86]  Robert E. Skelton,et al.  State Estimation With Finite Signal-to-Noise Models via Linear Matrix Inequalities , 2007 .

[87]  Christopher G. Atkeson,et al.  Using Local Trajectory Optimizers to Speed Up Global Optimization in Dynamic Programming , 1993, NIPS.

[88]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[89]  E. J. Cheng,et al.  Measured and modeled properties of mammalian skeletal muscle. II. The effectsof stimulus frequency on force-length and force-velocity relationships , 1999, Journal of Muscle Research & Cell Motility.

[90]  Robert R. Bitmead,et al.  Nonlinear control for an autonomous underwater vehicle (AUV) preserving linear design capabilities , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[91]  Juan C. Jiménez,et al.  Linear estimation of continuous-discrete linear state space models with multiplicative noise , 2002, Syst. Control. Lett..

[92]  J. Pantoja,et al.  Differential dynamic programming and Newton's method , 1988 .

[93]  Weiwei Li,et al.  Hierarchical optimal control of redundant biomechanical systems , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[94]  E. Kinnen,et al.  The inverse problem of the optimal regulator , 1972 .

[95]  M G Pandy,et al.  Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset , 2001, Computer methods in biomechanics and biomedical engineering.

[96]  Joseph J. Beaman,et al.  Non-linear quadratic gaussian controlf , 1984 .

[97]  Robert J. Elliott,et al.  Classes of Nonlinear Partially Observable Stochastic Optimal Control Problems with Explicit Optimal Control Laws , 1998 .

[98]  P. Viviani,et al.  The law relating the kinematic and figural aspects of drawing movements. , 1983, Acta psychologica.

[99]  L. Ghaoui,et al.  LMI optimization for nonstandard Riccati equations arising in stochastic control , 1996, IEEE Trans. Autom. Control..

[100]  James L. Lyons,et al.  Optimal Control Strategies Under Different Feedback Schedules: Kinematic Evidence , 2002, Journal of motor behavior.

[101]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[102]  Jan C. Willems,et al.  Feedback stabilizability for stochastic systems with state and control dependent noise , 1976, Autom..

[103]  H. Zelaznik,et al.  Motor-output variability: a theory for the accuracy of rapid motor acts. , 1979, Psychological review.

[104]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[105]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[106]  Andrew Y. Ng,et al.  Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping , 1999, ICML.

[107]  H. Hatze,et al.  Energy-optimal controls in the mammalian neuromuscular system , 1977, Biological Cybernetics.

[108]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[109]  David Q. Mayne,et al.  Differential dynamic programming , 1972, The Mathematical Gazette.

[110]  Daniel M. Wolpert,et al.  Forward Models for Physiological Motor Control , 1996, Neural Networks.

[111]  Chee-Meng Chew,et al.  Virtual Model Control: An Intuitive Approach for Bipedal Locomotion , 2001, Int. J. Robotics Res..

[112]  L. Liao,et al.  Convergence in unconstrained discrete-time differential dynamic programming , 1991 .

[113]  Miroslav Krstic,et al.  Output-feedback stochastic nonlinear stabilization , 1999, IEEE Trans. Autom. Control..

[114]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[115]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[116]  Andrew E. B. Lim,et al.  Discrete time LQG controls with control dependent noise , 1999 .

[117]  Kenneth Kreutz-Delgado,et al.  Numerical solution of nonlinear 𝒽2 and 𝒽∞ control problems with application to jet engine compressors , 2000, IEEE Trans. Control. Syst. Technol..

[118]  Hoda A. ElMaraghy,et al.  Design of an optimal feedback linearizing-based controller for an experimental flexible-joint robot manipulator , 1999 .

[119]  Isaac Yaesh,et al.  Hinfinity control and filtering of discrete-time stochastic systems with multiplicative noise , 2001, Autom..

[120]  Robert E. Skelton,et al.  Robust variance control for systems with finite-signal-to-noise uncertainty , 2000, Autom..

[121]  J. A. Bryson Optimal control-1950 to 1985 , 1996 .

[122]  Miroslav Krstic,et al.  Inverse optimal stabilization of a rigid spacecraft , 1999, IEEE Trans. Autom. Control..