Performance control for interconnection of identical systems: Application to PLL network design

In this paper, the problem of the control law design for interconnected identical systems ensuring the global stability and the global performance properties is under consideration. Inspired by the decentralized control law design methodology using the dissipativity input–output approach, the problem is reduced to the problem of satisfying two conditions: (i) the condition on the interconnection and (ii) the condition on the local subsystem dynamics. Both problems are efficiently solved applying a (quasi‐) convex LMI optimization and standard H∞ synthesis. The proposed design methodology is applied to the control law design of a synchronous PLL network. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  A. Michel,et al.  Input-output stability of interconnected systems , 1976 .

[2]  P. Moylan,et al.  Stability criteria for large-scale systems , 1978 .

[3]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[4]  Michael Athans,et al.  Survey of decentralized control methods for large scale systems , 1978 .

[5]  R.R. Mohler,et al.  Stability and robustness of multivariable feedback systems , 1981, Proceedings of the IEEE.

[6]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[7]  Jan Lunze,et al.  Feedback control of large-scale systems , 1992 .

[8]  Vincent D. Blondel,et al.  Simultaneous stabilizability of three linear systems is rationally undecidable , 1993, Math. Control. Signals Syst..

[9]  Sigurd Skogestad,et al.  Sequential design of decentralized controllers , 1994, Autom..

[10]  Pedro Luis Dias Peres,et al.  Decentralized control through parameter space optimization , 1994, Autom..

[11]  Keat-Choon Goh,et al.  Robust analysis, sectors, and quadratic functionals , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[12]  Gill A. Pratt,et al.  Distributed Synchronous Clocking , 1995, IEEE Trans. Parallel Distributed Syst..

[13]  Stéphane Font Methodologie pour prendre en compte la robustesse des systemes asservis : optimisation h-infini et approche symbolique de la forme standard , 1995 .

[14]  J. Tsitsiklis,et al.  NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[15]  Jaw-Kuen Shiau,et al.  Robust Decentralized State Feedback Control Design Using an Iterative Linear Matrix Inequality Algorithm , 1996 .

[16]  B. Razavi Monolithic phase-locked loops and clock recovery circuits : theory and design , 1996 .

[17]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[18]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[19]  Ulrich L. Rohde,et al.  Microwave and wireless synthesizers: theory and design , 1997 .

[20]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[21]  L. Ghaoui,et al.  IMPROVED LMI CONDITIONS FOR GAIN SCHEDULING AND RELATED CONTROL PROBLEMS , 1998 .

[22]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[23]  Jaw-Kuen Shiau,et al.  Structurally Constrained H∞ Suboptimal Control Design Using an Iterative Linear Matrix Inequality Algorithm Based on a Dual Design Formulation , 1999 .

[24]  A.P. Chandrakasan,et al.  Active GHz clock network using distributed PLLs , 2000, IEEE Journal of Solid-State Circuits.

[25]  M. Swaminathan,et al.  A multi-PLL clock distribution architecture for gigascale integration , 2001, Proceedings IEEE Computer Society Workshop on VLSI 2001. Emerging Technologies for VLSI Systems.

[26]  Liu Hongxia,et al.  An LMI Approach to Decentralized H_∞-Controller Design of a Class of Uncertain Large-Scale Interconnected Time-Delay Systems , 2001 .

[27]  G. Scorletti,et al.  An LMI approach to dencentralized H8 control , 2001 .

[28]  Venceslav F. Kroupa,et al.  Phase Lock Loops and Frequency Synthesis , 2003 .

[29]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[30]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[31]  Věnceslav F. Kroupa,et al.  Phase Lock Loops and Frequency Synthesis: Kroupa/Phase Lock Loops , 2005 .

[32]  Mark W. Spong,et al.  Passivity-Based Control of Multi-Agent Systems , 2006 .

[33]  Murat Arcak,et al.  Passivity as a Design Tool for Group Coordination , 2007, IEEE Transactions on Automatic Control.

[34]  Richard M. Murray,et al.  Recent Research in Cooperative Control of Multivehicle Systems , 2007 .

[35]  Mark W. Spong,et al.  Delay-independent stability for interconnected nonlinear systems with finite L2 gain , 2007, 2007 46th IEEE Conference on Decision and Control.

[36]  F. Allgöwer,et al.  On consensus in multi-agent systems with linear high-order agents , 2008 .

[37]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[38]  A. Voda,et al.  H∞ Loop shaping control for PLL-based mechanical resonance tracking in NEMS resonant mass sensors , 2008, 2008 IEEE Sensors.

[39]  John T. Wen,et al.  Adaptive design for reference velocity recovery in motion coordination , 2008, Syst. Control. Lett..

[40]  Junping Du,et al.  Dynamic output feedback control for consensus of multi-agent systems: An H∞ approach , 2009, 2009 American Control Conference.

[41]  Michel Verhaegen,et al.  Distributed Control for Identical Dynamically Coupled Systems: A Decomposition Approach , 2009, IEEE Transactions on Automatic Control.

[42]  Xiaoming Hu,et al.  Consensus of high order linear multi-agent systems using output error feedback , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[43]  Guisheng Zhai,et al.  An extended consensus algorithm for multi-agent systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[44]  Guisheng Zhai,et al.  A matrix inequality based design method for consensus problems in multi-agent systems , 2009, Int. J. Appl. Math. Comput. Sci..

[45]  R. Murray,et al.  Limits on the Network Sensitivity Function for Multi-Agent Systems on a Graph , 2009 .

[46]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2009, Autom..

[47]  Yang Liu,et al.  H ∞ consensus control of multi-agent systems with switching topology: a dynamic output feedback protocol , 2010, Int. J. Control.

[48]  F. Allgöwer,et al.  On consensus among identical linear systems using input-decoupled functional observers , 2010, Proceedings of the 2010 American Control Conference.

[49]  R. Murray,et al.  Limits on the network sensitivity function for homogeneous multi-agent systems on a graph , 2010, Proceedings of the 2010 American Control Conference.

[50]  G. Zhai,et al.  Extended consensus algorithm for multi-agent systems , 2010 .

[51]  Gérard Scorletti,et al.  A clock network of distributed ADPLLs using an asymmetric comparison strategy , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[52]  Peter Wieland,et al.  From Static to Dynamic Couplings in Consensus and Synchronization among Identical and Non-Identical Systems , 2010 .

[53]  A. Korniienko,et al.  Control Law Design for Distributed Multi-Agent Systems , 2011 .

[54]  Ioannis Lestas,et al.  Large Scale Heterogeneous Networks, the Davis-Wielandt Shell, and Graph Separation , 2012, SIAM J. Control. Optim..

[55]  Wenwu Yu,et al.  An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination , 2012, IEEE Transactions on Industrial Informatics.

[56]  Ines Gloeckner Microwave And Wireless Synthesizers Theory And Design , 2016 .