Set-valued optimization in welfare economics

This paper mainly concerns applications of advanced techniques of variational analysis and generalized differentiation to nonconvex models of welfare economics with finite-dimensional and infinite-dimensional commodity spaces. We pay special attention to establishing new relationships between necessary conditions in multiobjective/set-valued optimization and appropriate extensions of the second fundamental theorem of welfare economics to nonconvex economies with general preference relations. The variational approach developed in this paper allows us to obtain new necessary conditions for various types of local optimal solutions to constrained multiobjective problems and to derive from them new versions of the second welfare theorem applied to Pareto as well as weak, strict, and strong Pareto optimal allocations of nonconvex economies under certain qualification conditions developed in the paper. We also establish relationships of the latter conditions with some versions of Mas-Colell’s uniform properness.

[1]  Boris S. Mordukhovich,et al.  Pareto Optimality in Nonconvex Economies with Infinite-dimensional Commodity Spaces , 2001, J. Glob. Optim..

[2]  Abderrahim Jourani,et al.  Lagrange Multipliers for Multiobjective Programs with a General Preference , 2008 .

[3]  Alejandro Jofré,et al.  Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies , 2006 .

[4]  Rajiv Vohra,et al.  An Extension of the Second Welfare Theorem to Economies with Nonconvexities and Public Goods , 1987 .

[5]  Konrad Podczeck,et al.  Equilibria in vector lattices without ordered preferences or uniform properness , 1996 .

[6]  A. Ioffe,et al.  Variational analysis and mathematical economics 1: Subdifferential calculus and the second theorem of welfare economics , 2009 .

[7]  H. Riahi,et al.  Variational Methods in Partially Ordered Spaces , 2003 .

[8]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[9]  Boris S. Mordukhovich,et al.  Relative Pareto minimizers for multiobjective problems: existence and optimality conditions , 2009, Math. Program..

[10]  Stephan Dempe,et al.  Optimization with multivalued mappings : theory, applications and algorithms , 2006 .

[11]  Oussama Lachiri,et al.  About the second theorem of welfare economics with stock markets , 2006 .

[12]  Andreu Mas-Colell,et al.  The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .

[13]  M. Ali Khan,et al.  Ioffe's normal cone and the foundations of welfare economics: The infinite dimensional theory , 1991 .

[14]  Qiji J. Zhu,et al.  Nonconvex Separation Theorem for Multifunctions, Subdifferential Calculus and Applications , 2004 .

[15]  Alejandro Jofré,et al.  A nonconvex separation property and some applications , 2006, Math. Program..

[16]  Bernard Cornet,et al.  Valuation equilibrium and Pareto optimum in non-convex economies , 1988 .

[17]  Pareto Optima and Equilibria: The Finite Dimensional Case , 1985 .

[18]  Boris S. Mordukhovich,et al.  An Extended Extremal Principle with Applications to Multiobjective Optimization , 2003, SIAM J. Optim..

[19]  Charalambos D. Aliprantis,et al.  Advances in Equilibrium Theory , 1985 .

[20]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[21]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[22]  Boris S. Mordukhovich,et al.  Necessary conditions for super minimizers in constrained multiobjective optimization , 2009, J. Glob. Optim..

[23]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[24]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[25]  Stephan Dempe,et al.  Is bilevel programming a special case of a mathematical program with complementarity constraints? , 2012, Math. Program..

[26]  Boris S. Mordukhovich,et al.  Existence of minimizers and necessary conditions in set-valued optimization with equilibrium constraints , 2007 .

[27]  Boris S. Mordukhovich,et al.  An abstract extremal principle with applications to welfare economics , 2000 .

[28]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[29]  Qiji J. Zhu,et al.  Hamiltonian Necessary Conditions for a Multiobjective Optimal Control Problem with Endpoint Constraints , 2000, SIAM J. Control. Optim..

[30]  B. Mordukhovich Nonlinear Prices in Nonconvex Economies with Classical Pareto and Strong Pareto Optimal Allocations , 2005 .

[31]  Michel Théra,et al.  Constructive, experimental, and nonlinear analysis , 2000 .

[32]  M. Ali Khan The Mordukhovich Normal Cone and the Foundations of Welfare Economics , 1999 .