PyDREAM: high-dimensional parameter inference for biological models in python

Abstract Summary Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. Availability and implementation PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. Supplementary information Supplementary data are available at Bioinformatics online.

[1]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[2]  Haluk Resat,et al.  Integrated experimental and model-based analysis reveals the spatial aspects of EGFR activation dynamics. , 2012, Molecular bioSystems.

[3]  Jeremy L. Muhlich,et al.  Properties of cell death models calibrated and compared using Bayesian approaches , 2013, Molecular systems biology.

[4]  Permalink Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation , 2015 .

[5]  Kevin A Janes,et al.  Models of signalling networks – what cell biologists can gain from them and give to them , 2013, Journal of Cell Science.

[6]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[7]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[8]  Eric J. Deeds,et al.  Machines vs. Ensembles: Effective MAPK Signaling through Heterogeneous Sets of Protein Complexes , 2013, PLoS Comput. Biol..

[9]  K. Koch Introduction to Bayesian Statistics , 2007 .

[10]  William S. Hlavacek,et al.  BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments , 2016, Bioinform..

[11]  Jeff Reese,et al.  Competition and allostery govern substrate selectivity of cyclooxygenase-2 , 2015, Proceedings of the National Academy of Sciences.

[12]  V. Climenhaga Markov chains and mixing times , 2013 .

[13]  J. Vrugt,et al.  A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .

[14]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[15]  Roland Eils,et al.  Dynamics within the CD95 death-inducing signaling complex decide life and death of cells , 2010, Molecular systems biology.

[16]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[17]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[18]  Jasper A. Vrugt,et al.  Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation , 2016, Environ. Model. Softw..

[19]  K. S. Brown,et al.  Statistical mechanical approaches to models with many poorly known parameters. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Cajo J. F. ter Braak,et al.  Differential Evolution Markov Chain with snooker updater and fewer chains , 2008, Stat. Comput..

[21]  H. Rix,et al.  THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK , 2011, 1111.1724.

[22]  Lily A. Chylek,et al.  Modeling for (physical) biologists: an introduction to the rule-based approach , 2015, Physical biology.

[23]  Carlos F. Lopez,et al.  Programming biological models in Python using PySB , 2013, Molecular systems biology.

[24]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[25]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[26]  David J. Klinke,et al.  An empirical Bayesian approach for model-based inference of cellular signaling networks , 2009, BMC Bioinformatics.

[27]  William M. Bolstad,et al.  Introduction to Bayesian Statistics, Third Edition , 2016 .

[28]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..