A Unified Approach to Integrate Unilateral Constraints in the Stack of Tasks

The control approaches based on the task function formalism, and particularly those structured as a prioritized hierarchy of tasks, enable complex behaviors with elegant properties of robustness and portability to be built. However, it is difficult to consider a straightforward integration of tasks described by unilateral constraints in such frameworks. Indeed, unilateral constraints exhibit irregularities that prevent the insertion of unilateral tasks at any priority level, other than the lowest, of a hierarchy. In this paper, we present an original method to generalize the hierarchy-based control schemes to account for unilateral constraints at any priority level. We develop our method first for task sequencing using only the kinematics description; then, we expand it to the task description, using the operational space formulation. The method applies in robotics and computer graphics animation. Its practical implementation is exemplified by realizing a real-manipulator visual servoing task and a humanoid avatar reaching task; both experiments are achieved under the unilateral constraints of joint limits.

[1]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[2]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[3]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[4]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[5]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[6]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[7]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[8]  Jean-Jacques E. Slotine,et al.  A general framework for managing multiple tasks in highly redundant robotic systems , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[9]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[10]  Ian D. Walker,et al.  Robot subtask performance with singularity robustness using optimal damped least-squares , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[11]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[12]  Keith L. Doty,et al.  A Theory of Generalized Inverses Applied to Robotics , 1993, Int. J. Robotics Res..

[13]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[14]  Myung Jin Chung,et al.  A constrained optimization approach to resolving manipulator redundancy , 1996, J. Field Robotics.

[15]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..

[16]  Gregory D. Hager,et al.  Dynamic sensor planning in visual servoing , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[17]  Éric Marchand,et al.  A new redundancy-based iterative scheme for avoiding joint limits. Application to visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Éric Marchand,et al.  A redundancy-based iterative approach for avoiding joint limits: application to visual servoing , 2001, IEEE Trans. Robotics Autom..

[19]  Yoshihiko Nakamura,et al.  Whole-body cooperative balancing of humanoid robot using COG Jacobian , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[22]  Eiichi Yoshida,et al.  Humanoid motion planning for dynamic tasks , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[23]  Nicolás García Aracil,et al.  Continuous visual servoing despite the changes of visibility in image features , 2005, IEEE Transactions on Robotics.

[24]  Oussama Khatib,et al.  Control of Free-Floating Humanoid Robots Through Task Prioritization , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[25]  François Chaumette,et al.  Point-based and region-based image moments for visual servoing of planar objects , 2005, IEEE Transactions on Robotics.

[26]  K. Tanie,et al.  A switching command-based whole-body operation method for humanoid robots , 2005, IEEE/ASME Transactions on Mechatronics.

[27]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[28]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[29]  Éric Marchand,et al.  Statistically robust 2-D visual servoing , 2006, IEEE Transactions on Robotics.

[30]  Michael Gienger,et al.  Exploiting Task Intervals for Whole Body Robot Control , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  N. Mansard,et al.  A Qualitative visual servoing: Application to the visibility constraint , 2006 .

[32]  Oussama Khatib,et al.  A whole-body control framework for humanoids operating in human environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[33]  Oussama Khatib,et al.  Control Strategies for Robots in Contact , 2006 .

[34]  Ronan Boulic,et al.  Progressive Clamping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[35]  Nicolas Mansard,et al.  Task Sequencing for High-Level Sensor-Based Control , 2007, IEEE Transactions on Robotics.

[36]  Mark Dunn,et al.  Visually Guided Whole Body Interaction , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[37]  Olivier Stasse,et al.  Visually-Guided Grasping while Walking on a Humanoid Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[38]  Vincent Padois,et al.  Kinematic and dynamic model-based control of wheeled mobile manipulators: a unified framework for reactive approaches , 2007, Robotica.

[39]  Kazuhito Yokoi,et al.  Whole-Body Motion Generation Integrating Operator's Intention and Robot's Autonomy in Controlling Humanoid Robots , 2007, IEEE Transactions on Robotics.

[40]  Chien Chern Cheah,et al.  Region-Reaching Control of Robots , 2007, IEEE Transactions on Robotics.

[41]  Oussama Khatib,et al.  Synthesis and control of whole-body behaviors in humanoid systems , 2007 .

[42]  Michael Gienger,et al.  Real-time collision avoidance with whole body motion control for humanoid robots , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[44]  Olivier Stasse,et al.  Real-time (self)-collision avoidance task on a hrp-2 humanoid robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[45]  Oussama Khatib,et al.  Continuous control law from unilateral constraints , 2008, 2008 IEEE International Conference on Robotics and Automation.

[46]  Nicolas Mansard,et al.  Continuity of Varying-Feature-Set Control Laws , 2009, IEEE Transactions on Automatic Control.

[47]  Dan Puiu,et al.  Real-time collision avoidance for redundant manipulators , 2011, 2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI).