Identification of the dynamic parameters of the Orthoglide

This paper presents the experimental identification of the dynamic parameters of the Orthoglide, a 3-DOF parallel mechanism. The dynamic identification model is based on the inverse dynamic model, which is linear in the parameters. The model is computed in a closed form in terms of the Cartesian dynamic model elements of the legs and of the Newton-Euler equation of the platform. The base inertial parameters of the robot, which constitute the identifiable parameters, are given.

[1]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[2]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[3]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[4]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[5]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Wisama Khalil,et al.  Identification of the dynamic parameters of a closed loop robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[7]  Wisama Khalil,et al.  Dynamic Modeling of the Orthoglide , 2002 .

[8]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[9]  Maxime Gautier,et al.  Numerical calculation of the base inertial parameters of robots , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[10]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[11]  David E. Orin,et al.  Efficient O(N) computation of the operational space inertia matrix , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[12]  M. Gautier A comparison of filtered models for dynamic identification of robots , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[14]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[15]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .