Noncooperative cost spanning tree games with budget restrictions

We extend the noncooperative game associated with the cost spanning tree problem introduced by Bergantinos and Lorenzo (Math Method Oper Res 59(2004), 393–403) to situations where agents have budget restrictions. We study the Nash equilibria, subgame perfect Nash equilibria, and strong Nash equilibria of this game. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008

[1]  Anirban Kar,et al.  Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games , 2002, Games Econ. Behav..

[2]  Xi Chen,et al.  3-NASH is PPAD-Complete , 2005, Electron. Colloquium Comput. Complex..

[3]  Daniel J. Kleitman,et al.  Cost allocation for a spanning tree , 1973, Networks.

[4]  R. Prim Shortest connection networks and some generalizations , 1957 .

[5]  Gustavo Bergantiños,et al.  A non-cooperative approach to the cost spanning tree problem , 2004, Math. Methods Oper. Res..

[6]  Gustavo Bergantiños,et al.  Optimal Equilibria in the Non-Cooperative Game Associated with Cost Spanning Tree Problems , 2005, Ann. Oper. Res..

[7]  Hervé Moulin,et al.  Axiomatic cost and surplus sharing , 2002 .

[8]  C. G. Bird,et al.  On cost allocation for a spanning tree: A game theoretic approach , 1976, Networks.

[9]  Eyal Winter,et al.  Subscription Mechanisms for Network Formation , 2002, J. Econ. Theory.

[10]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[11]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[12]  L. Shapley A Value for n-person Games , 1988 .

[13]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[14]  Daniel Granot,et al.  On the core and nucleolus of minimum cost spanning tree games , 1984, Math. Program..