Knowledge-driven Active Learning

deployment of

[1]  M. Gori,et al.  Logic Explained Networks , 2021, NeSy.

[2]  Mihaela C. Stoian,et al.  Deep Learning with Logical Constraints , 2022, International Joint Conference on Artificial Intelligence.

[3]  Antoni B. Chan,et al.  A Comparative Survey of Deep Active Learning , 2022, ArXiv.

[4]  Fabien L. Gandon,et al.  Learning and Reasoning for Cultural Metadata Quality: Coupling Symbolic AI and Machine Learning over a Semantic Web Knowledge Graph to Support Museum Curators in Improving the Quality of Cultural Metadata and Information Retrieval , 2022, ACM Journal on Computing and Cultural Heritage.

[5]  M. Gori,et al.  Entropy-based Logic Explanations of Neural Networks , 2021, AAAI.

[6]  Nicolas Thome,et al.  Confidence Estimation via Auxiliary Models , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Zhihui Li,et al.  A Survey of Deep Active Learning , 2020, ACM Comput. Surv..

[8]  F. Roli,et al.  Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  I. Tsang,et al.  Bayesian Active Learning by Disagreements: A Geometric Perspective , 2021, ArXiv.

[10]  Hyuk-Jae Lee,et al.  Active Learning for Deep Object Detection via Probabilistic Modeling , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  Tae-Kyun Kim,et al.  Sequential Graph Convolutional Network for Active Learning , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Antoni B. Chan,et al.  A Comparative Survey: Benchmarking for Pool-based Active Learning , 2021, IJCAI.

[13]  Marco Maggini,et al.  Human-Driven FOL Explanations of Deep Learning , 2020, IJCAI.

[14]  Been Kim,et al.  Concept Bottleneck Models , 2020, ICML.

[15]  Arun Das,et al.  Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey , 2020, ArXiv.

[16]  Michele Fenzi,et al.  Scalable Active Learning for Object Detection , 2020, 2020 IEEE Intelligent Vehicles Symposium (IV).

[17]  Haifeng Shen,et al.  Adaptive Object Detection with Dual Multi-Label Prediction , 2020, ECCV.

[18]  C. Rudin,et al.  Concept whitening for interpretable image recognition , 2020, Nature Machine Intelligence.

[19]  John Langford,et al.  Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds , 2019, ICLR.

[20]  Alessandro Bay,et al.  On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks NeurIPS Reproducibility Challenge 2019 , 2019 .

[21]  Bin Liu,et al.  Using multi-label classification to improve object detection , 2019, Neurocomputing.

[22]  Xiaoshuang Shi,et al.  Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss , 2019, Comput. Medical Imaging Graph..

[23]  Yarin Gal,et al.  BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning , 2019, NeurIPS.

[24]  Gopinath Chennupati,et al.  On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks , 2019, NeurIPS.

[25]  In So Kweon,et al.  Learning Loss for Active Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Trevor Darrell,et al.  Variational Adversarial Active Learning , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Marco Gori,et al.  LYRICS: A General Interface Layer to Integrate Logic Inference and Deep Learning , 2019, ECML/PKDD.

[28]  James Zou,et al.  Towards Automatic Concept-based Explanations , 2019, NeurIPS.

[29]  Fedor Zhdanov,et al.  Diverse mini-batch Active Learning , 2019, ArXiv.

[30]  Frank Hutter,et al.  Decoupled Weight Decay Regularization , 2017, ICLR.

[31]  Remus Pop,et al.  Deep Ensemble Bayesian Active Learning : Addressing the Mode Collapse issue in Monte Carlo dropout via Ensembles , 2018, ArXiv.

[32]  Andreas Nürnberger,et al.  The Power of Ensembles for Active Learning in Image Classification , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[33]  Lalana Kagal,et al.  Explaining Explanations: An Overview of Interpretability of Machine Learning , 2018, 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA).

[34]  Franco Turini,et al.  Local Rule-Based Explanations of Black Box Decision Systems , 2018, ArXiv.

[35]  Carlos Guestrin,et al.  Anchors: High-Precision Model-Agnostic Explanations , 2018, AAAI.

[36]  Frédéric Precioso,et al.  Adversarial Active Learning for Deep Networks: a Margin Based Approach , 2018, ArXiv.

[37]  Gary Marcus,et al.  Deep Learning: A Critical Appraisal , 2018, ArXiv.

[38]  Silvio Savarese,et al.  Active Learning for Convolutional Neural Networks: A Core-Set Approach , 2017, ICLR.

[39]  Razvan Pascanu,et al.  A simple neural network module for relational reasoning , 2017, NIPS.

[40]  Zoubin Ghahramani,et al.  Deep Bayesian Active Learning with Image Data , 2017, ICML.

[41]  Marco Gori,et al.  Semantic-based regularization for learning and inference , 2017, Artif. Intell..

[42]  Frédéric Precioso,et al.  Active learning strategy for CNN combining batchwise Dropout and Query-By-Committee , 2017, ESANN.

[43]  Philipp Koehn,et al.  Cognitive Psychology , 1992, Ageing and Society.

[44]  Sergio Gomez Colmenarejo,et al.  Hybrid computing using a neural network with dynamic external memory , 2016, Nature.

[45]  Artur S. d'Avila Garcez,et al.  Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge , 2016, NeSy@HLAI.

[46]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[48]  Yinda Zhang,et al.  LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop , 2015, ArXiv.

[49]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Luc De Raedt,et al.  Probabilistic (logic) programming concepts , 2015, Machine Learning.

[51]  Marcello Sanguineti,et al.  Foundations of Support Constraint Machines , 2015, Neural Computation.

[52]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[53]  Dan Wang,et al.  A new active labeling method for deep learning , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[54]  Sanja Fidler,et al.  Detect What You Can: Detecting and Representing Objects Using Holistic Models and Body Parts , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[56]  Marco Gori,et al.  Constraint Verification With Kernel Machines , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[57]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[58]  Zoubin Ghahramani,et al.  Bayesian Active Learning for Classification and Preference Learning , 2011, ArXiv.

[59]  Pietro Perona,et al.  The Caltech-UCSD Birds-200-2011 Dataset , 2011 .

[60]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[61]  Xiaojin Zhu,et al.  Introduction to Semi-Supervised Learning , 2009, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[62]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[64]  Ross D. King,et al.  Active Learning for Regression Based on Query by Committee , 2007, IDEAL.

[65]  Andrew McCallum,et al.  Introduction to Statistical Relational Learning , 2007 .

[66]  Klaus Brinker,et al.  Incorporating Diversity in Active Learning with Support Vector Machines , 2003, ICML.

[67]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[68]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[69]  Greg Schohn,et al.  Less is More: Active Learning with Support Vector Machines , 2000, ICML.

[70]  Andrew McCallum,et al.  Employing EM and Pool-Based Active Learning for Text Classification , 1998, ICML.

[71]  Laurian M. Chirica,et al.  The entity-relationship model: toward a unified view of data , 1975, SIGF.