Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable Initialization

In this paper, we propose a new visual-inertial Simultaneous Localization and Mapping (SLAM) algorithm. With the tightly coupled sensor fusion of a global shutter monocular camera and a low-cost Inertial Measurement Unit (IMU), this algorithm is able to achieve robust and real-time estimates of the sensor poses in unknown environment. To address the real-time visual-inertial fusion problem, we present a parallel framework with a novel IMU initialization method. Our algorithm also benefits from the novel IMU factor, the continuous preintegration method, the vision factor of directional error, the separability trick and the robust initialization criterion which can efficiently output reliable estimates in real-time on modern Central Processing Unit (CPU). Tremendous experiments also validate the proposed algorithm and prove it is comparable to the state-of-art method.

[1]  Daniel Cremers,et al.  Semi-dense Visual Odometry for a Monocular Camera , 2013, 2013 IEEE International Conference on Computer Vision.

[2]  Gabe Sibley,et al.  A Sliding Window Filter for Incremental SLAM , 2008 .

[3]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[5]  Dimitrios G. Kottas,et al.  Observability-constrained Vision-aided Inertial Navigation , 2012 .

[6]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[7]  Salah Sukkarieh,et al.  Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions , 2012, IEEE Transactions on Robotics.

[8]  Stephen P. Boyd,et al.  Sensor Selection via Convex Optimization , 2009, IEEE Transactions on Signal Processing.

[9]  Juan D. Tardós,et al.  Visual-Inertial Monocular SLAM With Map Reuse , 2016, IEEE Robotics and Automation Letters.

[10]  Nicholas Roy,et al.  RANGE - robust autonomous navigation in GPS-denied environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[11]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[13]  Tom Drummond,et al.  Unified Loop Closing and Recovery for Real Time Monocular SLAM , 2008, BMVC.

[14]  Gamini Dissanayake,et al.  Convergence and Consistency Analysis for a 3-D Invariant-EKF SLAM , 2017, IEEE Robotics and Automation Letters.

[15]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Roland Siegwart,et al.  Appearance-Guided Monocular Omnidirectional Visual Odometry for Outdoor Ground Vehicles , 2008, IEEE Transactions on Robotics.

[17]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[18]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  Frank Dellaert,et al.  On-Manifold Preintegration for Real-Time Visual--Inertial Odometry , 2015, IEEE Transactions on Robotics.

[20]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[21]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[22]  Clark F. Olson,et al.  Stereo ego-motion improvements for robust rover navigation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[23]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Roland Siegwart,et al.  Monocular Vision for Long‐term Micro Aerial Vehicle State Estimation: A Compendium , 2013, J. Field Robotics.

[25]  Wolfram Burgard,et al.  A Fully Autonomous Indoor Quadrotor , 2012, IEEE Transactions on Robotics.

[26]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[27]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[28]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[29]  Vijay Kumar,et al.  Initialization-Free Monocular Visual-Inertial State Estimation with Application to Autonomous MAVs , 2014, ISER.

[30]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[31]  Danica Kragic,et al.  Unifying perspectives in computational and robot vision , 2008 .

[32]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[33]  Stergios I. Roumeliotis,et al.  Stochastic cloning: a generalized framework for processing relative state measurements , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[34]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[35]  Dimitrios G. Kottas,et al.  Consistency Analysis and Improvement of Vision-aided Inertial Navigation , 2014, IEEE Transactions on Robotics.

[36]  F. Dellaert Factor Graphs and GTSAM: A Hands-on Introduction , 2012 .

[37]  Stefano Soatto,et al.  Visual-inertial navigation, mapping and localization: A scalable real-time causal approach , 2011, Int. J. Robotics Res..

[38]  Anastasios I. Mourikis,et al.  High-precision, consistent EKF-based visual-inertial odometry , 2013, Int. J. Robotics Res..

[39]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Gamini Dissanayake,et al.  An invariant-EKF VINS algorithm for improving consistency , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[41]  Gaurav S. Sukhatme,et al.  Sliding window filter with application to planetary landing , 2010, J. Field Robotics.

[42]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Roland Siegwart,et al.  A robust and modular multi-sensor fusion approach applied to MAV navigation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  Vijay Kumar,et al.  Visual-inertial direct SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[45]  Javier Civera,et al.  Inverse Depth to Depth Conversion for Monocular SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[46]  Shaojie Shen,et al.  Robust initialization of monocular visual-inertial estimation on aerial robots , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[47]  Luca Carlone,et al.  Attention and anticipation in fast visual-inertial navigation , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).