Competent Vision and Navigation Systems Competent Vision and Navigation Systems From Flying Insects to Autonomously Navigating Robots

[1]  Karen Roberts,et al.  'Bee-bot': using peripheral optical flow to avoid obstacles , 1992, Other Conferences.

[2]  Oscar Nasisi,et al.  Stable AGV corridor navigation with fused vision-based control signals , 2002, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02.

[3]  Pascal Fua,et al.  A parallel stereo algorithm that produces dense depth maps and preserves image features , 1993, Machine Vision and Applications.

[4]  Javaan Chahl,et al.  Biologically inspired visual sensing and flight Control , 2003, The Aeronautical Journal (1968).

[5]  H. Eckert,et al.  Excitatory and inhibitory response components in the landing response of the blowfly,Calliphora erythrocephala , 1980, Journal of comparative physiology.

[6]  Mandyam V. Srinivasan,et al.  An image-interpolation technique for the computation of optic flow and egomotion , 1994, Biological Cybernetics.

[7]  James Sean Humbert,et al.  Experimental validation of wide-field integration methods for autonomous navigation , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  N. Franceschini,et al.  A Bio-Inspired Flying Robot Sheds Light on Insect Piloting Abilities , 2007, Current Biology.

[9]  Dario Floreano,et al.  Fly-inspired visual steering of an ultralight indoor aircraft , 2006, IEEE Transactions on Robotics.

[10]  M. V. Srinivasan,et al.  Freely flying honeybees use image motion to estimate object distance , 1989, Naturwissenschaften.

[11]  M V Srinivasan,et al.  How insects infer range from visual motion. , 1993, Reviews of oculomotor research.

[12]  George Adrian Horridge,et al.  Insects which turn and look , 1977 .

[13]  William H. Warren,et al.  Robot navigation from a Gibsonian viewpoint , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[14]  Alexander Borst,et al.  Visual information processing in the fly's landing system , 1988, Journal of Comparative Physiology A.

[15]  M. Srinivasan,et al.  Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.) , 2006, Journal of Experimental Biology.

[16]  Mandyam V. Srinivasan,et al.  Small brains, smart minds: vision, perception, navigation and 'cognition' in insects , 2006 .

[17]  Nicolas H. Franceschini,et al.  Optic flow regulation: the key to aircraft automatic guidance , 2005, Robotics Auton. Syst..

[18]  G. Horridge The evolution of visual processing and the construction of seeing systems , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  J. Mollon “… On the Basis of Velocity Clues Alone”: Some Perceptual Themes 1946–1996 , 1997, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[20]  Svetha Venkatesh,et al.  Insect inspired behaviours for the autonomous control of mobile robots , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[21]  Mandyam V. Srinivasan,et al.  Landing Strategies in Honeybees, and Applications to UAVs , 2001, ISRR.

[22]  Heinrich H. Bülthoff,et al.  Insect Inspired Visual Control of Translatory Flight , 2001, ECAL.

[23]  S. Zhang,et al.  Evidence for two distinct movement-detecting mechanisms in insect vision , 2005, Naturwissenschaften.

[24]  Mandyam V. Srinivasan,et al.  An Optical System for Guidance of Terrain Following in UAVs , 2006, 2006 IEEE International Conference on Video and Signal Based Surveillance.

[25]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[26]  Svetha Venkatesh,et al.  How honeybees make grazing landings on flat surfaces , 2000, Biological Cybernetics.

[27]  C. David Compensation for height in the control of groundspeed byDrosophila in a new, ‘barber's pole’ wind tunnel , 1982, Journal of comparative physiology.

[28]  Mandyam V. Srinivasan,et al.  Temporal acuity of honeybee vision: behavioural studies using moving stimuli , 2004, Journal of Comparative Physiology A.

[29]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[30]  Randy Beard,et al.  Maximizing Miniature Aerial Vehicles Obstacle and Terrain Avoidance for MAVs , 2006 .

[31]  Nicolas H. Franceschini,et al.  A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance , 2008, Auton. Robots.

[32]  M V Srinivasan,et al.  Visual control of honeybee flight. , 1997, EXS.

[33]  Mandyam V. Srinivasan,et al.  Visual Control of Flight Speed and Height in the Honeybee , 2006, SAB.

[34]  Matthew Garratt,et al.  An overview of insect-inspired guidance for application in ground and airborne platforms , 2004 .

[35]  Mandyam Srinivasan Visual flight control and navigation in honeybees: applications to robotics , 2002 .

[36]  M. Srinivasan Generalized gradient schemes for the measurement of two-dimensional image motion , 1990, Biological Cybernetics.

[37]  Mandyam V. Srinivasan,et al.  A vision system for optic-flow-based guidance of UAVs , 2007 .

[38]  Gaurav S. Sukhatme,et al.  Optimum Camera Angle for Optic Flow-Based Centering Response , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.