Algorithmic applications of propositional proof complexity

This thesis explores algorithmic applications of proof complexity theory to the areas of exact and approximation algorithms for graph problems as well as propositional reasoning systems studied commonly by the artificial intelligence and formal verification communities. On the theoretical side, our focus is on the propositional proof system called resolution. On the practical side, we concentrate on propositional satisfiability algorithms (SAT solvers) which form the core of numerous real-world automated reasoning systems. There are three major contributions in this work. (A) We study the behavior of resolution on appropriate encodings of three graphs problems, namely, independent set, vertex cover, and clique. We prove lower bounds on the sizes of resolution proofs for these problems and derive from this unconditional hardness of approximation results for resolution-based algorithms. (B) We explore two key techniques used in SAT solvers called clause learning and restarts, providing the first formal framework for their analysis. Formulating them as proof systems, we put them in perspective with respect to resolution and its refinements. (C) We present new techniques for designing structure-aware SAT solvers based on high-level problem descriptions. We present empirical studies which demonstrate that one can achieve enormous speed-up in practice by incorporating variable orders as well as symmetry information obtained directly from the underlying problem domain.

[1]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002, Discret. Appl. Math..

[2]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[3]  Ashish Sabharwal SymChaff: A Structure-Aware Satisfiability Solver , 2005, AAAI.

[4]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[5]  A. Coja-Oghlan The Lovász Number of Random Graphs , 2003, Combinatorics, Probability and Computing.

[6]  Andreas Kuehlmann,et al.  A fast pseudo-Boolean constraint solver , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Matthew L. Ginsberg,et al.  Generalizing Boolean Satisfiability I: Background and Survey of Existing Work , 2011, J. Artif. Intell. Res..

[8]  David G. Mitchell,et al.  The resolution complexity of random graph k-colorability , 2005, Discret. Appl. Math..

[9]  Jarrod A. Roy,et al.  Resolution cannot polynomially simulate compressed-BFS , 2004, Annals of Mathematics and Artificial Intelligence.

[10]  Alexander A. Razborov Resolution lower bounds for perfect matching principles , 2004, J. Comput. Syst. Sci..

[11]  Matthew L. Ginsberg,et al.  Generalizing Boolean Satisfiability II: Theory , 2004, J. Artif. Intell. Res..

[12]  Henry A. Kautz,et al.  Towards Understanding and Harnessing the Potential of Clause Learning , 2004, J. Artif. Intell. Res..

[13]  Igor L. Markov,et al.  Exploiting structure in symmetry detection for CNF , 2004, Proceedings. 41st Design Automation Conference, 2004..

[14]  Marijn J. H. Heule,et al.  March_eq: Implementing Additional Reasoning into an Efficient Look-Ahead SAT Solver , 2004, SAT (Selected Papers.

[15]  Inês Lynce,et al.  An Overview of Backtrack Search Satisfiability Algorithms , 2003, Annals of Mathematics and Artificial Intelligence.

[16]  Ronen I. Brafman,et al.  A simplifier for propositional formulas with many binary clauses , 2001, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  Balakrishnan Krishnamurthy Short proofs for tricky formulas , 2004, Acta Informatica.

[18]  Ofer Strichman,et al.  Accelerating Bounded Model Checking of Safety Properties , 2004, Formal Methods Syst. Des..

[19]  Henry A. Kautz,et al.  Understanding the power of clause learning , 2003, IJCAI 2003.

[20]  Russell Impagliazzo,et al.  Memoization and DPLL: formula caching proof systems , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[21]  Toniann Pitassi,et al.  The complexity of resolution refinements , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[22]  Henry A. Kautz,et al.  Using Problem Structure for Efficient Clause Learning , 2003, SAT.

[23]  Armando Tacchella,et al.  Dependent and Independent Variables in Propositional Satisfiability , 2002, JELIA.

[24]  Maria Luisa Bonet,et al.  On the automatizability of resolution and related propositional proof systems , 2002, Inf. Comput..

[25]  Lakhdar Sais,et al.  Recovering and Exploiting Structural Knowledge from CNF Formulas , 2002, CP.

[26]  Rolf Drechsler,et al.  On the relation between SAT and BDDs for equivalence checking , 2002, Proceedings International Symposium on Quality Electronic Design.

[27]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Jochen Messner,et al.  On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF Resolution , 2009, ICALP.

[29]  Igor L. Markov,et al.  Solving difficult SAT instances in the presence of symmetry , 2002, Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).

[30]  Michael Alekhnovich,et al.  An exponential separation between regular and general resolution , 2002, STOC '02.

[31]  Maria Fox,et al.  Extending the Exploitation of Symmetries in Planning , 2002, AIPS.

[32]  Igor L. Markov,et al.  A Compressed Breadth-First Search for Satisfiability , 2002, ALENEX.

[33]  Chu Min Li,et al.  Integrating symmetry breaking into a DLL procedure , 2002 .

[34]  Maria Luisa Bonet,et al.  Optimality of size-width tradeoffs for resolution , 2001, computational complexity.

[35]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[36]  Luca Trevisan,et al.  Non-approximability results for optimization problems on bounded degree instances , 2001, STOC '01.

[37]  Michael Molloy,et al.  A sharp threshold in proof complexity , 2001, STOC '01.

[38]  M. Moskewicz,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[39]  Russell Impagliazzo,et al.  Resolution complexity of independent sets in random graphs , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[40]  Randal E. Bryant,et al.  Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[41]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[42]  J. Kraj On the Weak Pigeonhole Principle , 2001 .

[43]  Eli Ben-Sasson,et al.  Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..

[44]  Joao Marques-Silva,et al.  Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability , 2000, CP.

[45]  Maria Luisa Bonet,et al.  On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems , 2000, SIAM J. Comput..

[46]  Sheila A. McIlraith,et al.  Partition-Based Logical Reasoning , 2000, KR.

[47]  Thomas Stützle,et al.  SATLIB: An Online Resource for Research on SAT , 2000 .

[48]  Ofer Strichman,et al.  Tuning SAT Checkers for Bounded Model Checking , 2000, CAV.

[49]  Igor L. Markov,et al.  PBS: A Backtrack-Search Pseudo-Boolean Solver and Optimizer , 2000 .

[50]  Alasdair Urquhart,et al.  The Symmetry Rule in Propositional Logic , 1999, Discret. Appl. Math..

[51]  Maria Fox,et al.  The Detection and Exploitation of Symmetry in Planning Problems , 1999, IJCAI.

[52]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[53]  Masahiro Fujita,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, DAC '99.

[54]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[55]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[56]  Richard Beigel,et al.  Finding maximum independent sets in sparse and general graphs , 1999, SODA '99.

[57]  Toniann Pitassi,et al.  Propositional Proof Complexity: Past, Present and Future , 2001, Bull. EATCS.

[58]  F. Brglez,et al.  Design of experiments in BDD variable ordering: lessons learned , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[59]  Bart Selman,et al.  Randomization in Backtrack Search: Exploiting Heavy-Tailed Profiles for Solving Hard Scheduling Problems , 1998, AIPS.

[60]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[61]  Michael E. Saks,et al.  On the complexity of unsatisfiability proofs for random k-CNF formulas , 1998, STOC '98.

[62]  Henry A. Kautz,et al.  BLACKBOX: A New Approach to the Application of Theorem Proving to Problem Solving , 1998 .

[63]  Pavel Pudlák,et al.  Lower bounds for resolution and cutting plane proofs and monotone computations , 1997, Journal of Symbolic Logic.

[64]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[65]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[66]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[67]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[68]  Joao Marques-Silva,et al.  Robust search algorithms for test pattern generation , 1997, Proceedings of IEEE 27th International Symposium on Fault Tolerant Computing.

[69]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[70]  James M. Crawford,et al.  Symmetry-Breaking Predicates for Search Problems , 1996, KR.

[71]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[72]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[73]  Robert K. Brayton,et al.  Combinational test generation using satisfiability , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[74]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[75]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[76]  Joao Marques-Silva,et al.  GRASP-A new search algorithm for satisfiability , 1996, Proceedings of International Conference on Computer Aided Design.

[77]  Ran Raz,et al.  Lower bounds for cutting planes proofs with small coefficients , 1995, STOC '95.

[78]  Russell Impagliazzo,et al.  Upper and lower bounds for tree-like cutting planes proofs , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[79]  Hantao Zhang Solving Open Quasigroup Problems by Propositional Reasoning , 1994 .

[80]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[81]  Tracy Larrabee,et al.  Explorations of sequential ATPG using Boolean satisfiability , 1993, Digest of Papers Eleventh Annual 1993 IEEE VLSI Test Symposium.

[82]  Yuri Gurevich,et al.  Logic in Computer Science , 1993, Current Trends in Theoretical Computer Science.

[83]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[84]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[85]  Etsuji Tomita,et al.  A Simple Algorithm for Finding a Maximum Clique and Its Worst-Case Time Complexity , 1990, Systems and Computers in Japan.

[86]  Miklós Ajtai,et al.  The complexity of the Pigeonhole Principle , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[87]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[88]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[89]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[90]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[91]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[92]  Gillier,et al.  Logic for Computer Science , 1986 .

[93]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[94]  Michael R. Genesereth,et al.  The Use of Design Descriptions in Automated Diagnosis , 1984, Artif. Intell..

[95]  Randall Davis,et al.  Diagnostic Reasoning Based on Structure and Behavior , 1984, Artif. Intell..

[96]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[97]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[98]  Vasek Chvátal,et al.  Determining the Stability Number of a Graph , 1976, SIAM J. Comput..

[99]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[100]  Robert E. Tarjan,et al.  Finding a Maximum Independent Set , 1976, SIAM J. Comput..

[101]  R. Tarjan Finding a Maximum Clique. , 1972 .

[102]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[103]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[104]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[105]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[106]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.