The risk-sensitive index and theH2 andH∞, norms for nonlinear systems

In this paper we study two measures of the “size” of systems, namely, the so-calledH2 and H∞ norms. These measures are important tools for determining the influence of disturbances on performance. We show that the risk-sensitive index on an infinite time horizon contains detailed information concerning these measures, via small noise and small risk limits.

[1]  William M. McEneaney,et al.  Uniqueness for Viscosity Solutions of Nonstationary Hamilton--Jacobi--Bellman Equations Under Some A Priori Conditions (with Applications) , 1995 .

[2]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[3]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[4]  P. Whittle Risk-sensitive linear/quadratic/gaussian control , 1981, Advances in Applied Probability.

[5]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[6]  W. Fleming,et al.  Risk-Sensitive Control on an Infinite Time Horizon , 1995 .

[7]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .

[8]  Matthew R. James,et al.  Numerical approximation of the H∞ norm for nonlinear systems , 1995, Autom..

[9]  T. Runolfsson The equivalence between infinite-horizon optimal control of stochastic systems with exponential-of-integral performance index and stochastic differential games , 1994, IEEE Trans. Autom. Control..

[10]  Matthew R. James,et al.  A partial differential inequality for dissipative nonlinear systems , 1993 .

[11]  P. Whittle Risk-Sensitive Optimal Control , 1990 .

[12]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[13]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[14]  W. M. Wonham,et al.  A Liapunov method for the estimation of statistical averages , 1966 .

[15]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[16]  William M. McEneaney,et al.  Robust control and differential games on a finite time horizon , 1995, Math. Control. Signals Syst..

[17]  P. Whittle A risk-sensitive maximum principle , 1990 .

[18]  Matthew R. James,et al.  Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games , 1992, Math. Control. Signals Syst..

[19]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[20]  B. Heimann,et al.  Fleming, W. H./Rishel, R. W., Deterministic and Stochastic Optimal Control. New York‐Heidelberg‐Berlin. Springer‐Verlag. 1975. XIII, 222 S, DM 60,60 , 1979 .

[21]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[22]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .

[23]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[24]  W. Fleming,et al.  Risk sensitive optimal control and differential games , 1992 .

[25]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .