A Brief Survey on Semantic Segmentation with Deep Learning

Abstract Semantic segmentation is a challenging task in computer vision. In recent years, the performance of semantic segmentation has been greatly improved by using deep learning techniques. A large number of novel methods have been proposed. This paper aims to provide a brief review of research efforts on deep-learning-based semantic segmentation methods. We categorize the related research according to its supervision level, i.e., fully-supervised methods, weakly-supervised methods and semi-supervised methods. We also discuss the common challenges of the current research, and present several valuable growing research points in this field. This survey is expected to familiarize readers with the progress and challenges of semantic segmentation research in the deep learning era.

[1]  Seunghoon Hong,et al.  Weakly Supervised Semantic Segmentation Using Web-Crawled Videos , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Sanja Fidler,et al.  The Role of Context for Object Detection and Semantic Segmentation in the Wild , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Eugenio Culurciello,et al.  Flattened Convolutional Neural Networks for Feedforward Acceleration , 2014, ICLR.

[4]  Eugenio Culurciello,et al.  ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation , 2016, ArXiv.

[5]  Xinxin Hu,et al.  ACNET: Attention Based Network to Exploit Complementary Features for RGBD Semantic Segmentation , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[6]  Sanja Fidler,et al.  3D Graph Neural Networks for RGBD Semantic Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[7]  Yan Huang,et al.  Box-Driven Class-Wise Region Masking and Filling Rate Guided Loss for Weakly Supervised Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Christopher Zach,et al.  ContextNet: Exploring Context and Detail for Semantic Segmentation in Real-time , 2018, BMVC.

[9]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[10]  Eric P. Xing,et al.  Few-Shot Semantic Segmentation with Prototype Learning , 2018, BMVC.

[11]  Bingbing Ni,et al.  HCP: A Flexible CNN Framework for Multi-Label Image Classification , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Jian Sun,et al.  DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Anton van den Hengel,et al.  Wider or Deeper: Revisiting the ResNet Model for Visual Recognition , 2016, Pattern Recognit..

[14]  Brian Kulis,et al.  W-Net: A Deep Model for Fully Unsupervised Image Segmentation , 2017, ArXiv.

[15]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Gang Wang,et al.  Learning Common and Specific Features for RGB-D Semantic Segmentation with Deconvolutional Networks , 2016, ECCV.

[17]  Xu Ji,et al.  Invariant Information Distillation for Unsupervised Image Segmentation and Clustering , 2018, ArXiv.

[18]  Xiaogang Wang,et al.  Context Encoding for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[19]  Yang Zou,et al.  Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training , 2018, ArXiv.

[20]  Daniel Cohen-Or,et al.  Cascaded Feature Network for Semantic Segmentation of RGB-D Images , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[21]  Nanning Zheng,et al.  Salient Object Detection: A Discriminative Regional Feature Integration Approach , 2013, International Journal of Computer Vision.

[22]  Vladlen Koltun,et al.  Feature Space Optimization for Semantic Video Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Yi Yang,et al.  SG-One: Similarity Guidance Network for One-Shot Semantic Segmentation , 2018, IEEE Transactions on Cybernetics.

[24]  Trevor Darrell,et al.  Constrained Convolutional Neural Networks for Weakly Supervised Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[25]  Haibin Ling,et al.  Dense Recurrent Neural Networks for Scene Labeling , 2018, ArXiv.

[26]  Thomas A. Funkhouser,et al.  Semantic Scene Completion from a Single Depth Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Mario Fritz,et al.  STD2P: RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Cristian Sminchisescu,et al.  CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[30]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[31]  C. V. Jawahar,et al.  Efficient Semantic Segmentation Using Gradual Grouping , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[32]  Christopher Joseph Pal,et al.  The Importance of Skip Connections in Biomedical Image Segmentation , 2016, LABELS/DLMIA@MICCAI.

[33]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[34]  Konstantinos Kamnitsas,et al.  Unsupervised domain adaptation in brain lesion segmentation with adversarial networks , 2016, IPMI.

[35]  Christopher Zach,et al.  Seeing Behind Things: Extending Semantic Segmentation to Occluded Regions , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[36]  Mitko Veta,et al.  Adversarial Training and Dilated Convolutions for Brain MRI Segmentation , 2017, DLMIA/ML-CDS@MICCAI.

[37]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[38]  Bernt Schiele,et al.  Simple Does It: Weakly Supervised Instance and Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[40]  Bingbing Ni,et al.  Assistive tagging: A survey of multimedia tagging with human-computer joint exploration , 2012, CSUR.

[41]  Di Lin,et al.  Zig-Zag Network for Semantic Segmentation of RGB-D Images , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Andrew Owens,et al.  SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels , 2013, 2013 IEEE International Conference on Computer Vision.

[43]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[44]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[45]  Yoshua Bengio,et al.  The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[46]  Shichao Zhang,et al.  Low-Rank Sparse Subspace for Spectral Clustering , 2019, IEEE Transactions on Knowledge and Data Engineering.

[47]  Yi Yang,et al.  Taking a Closer Look at Domain Shift: Category-Level Adversaries for Semantics Consistent Domain Adaptation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Nojun Kwak,et al.  ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules , 2019, ArXiv.

[49]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[50]  Christoph Meinel,et al.  Conditional Adversarial Network for Semantic Segmentation of Brain Tumor , 2017, ArXiv.

[51]  Gang Yu,et al.  Learning a Discriminative Feature Network for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[52]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[53]  Qi-Xing Huang,et al.  Domain Transfer Through Deep Activation Matching , 2018, ECCV.

[54]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[55]  Yi Yang,et al.  Macro-Micro Adversarial Network for Human Parsing , 2018, ECCV.

[56]  Weichao Xu,et al.  Real-time object detection and semantic segmentation for autonomous driving , 2018, International Symposium on Multispectral Image Processing and Pattern Recognition.

[57]  Daniel Cremers,et al.  FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture , 2016, ACCV.

[58]  Iasonas Kokkinos,et al.  Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs , 2014, ICLR.

[59]  Alexei A. Efros,et al.  Conditional Networks for Few-Shot Semantic Segmentation , 2018, ICLR.

[60]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  Tao Yang,et al.  Semantic segmentation via highly fused convolutional network with multiple soft cost functions , 2019, Cognitive Systems Research.

[62]  Alexei A. Efros,et al.  Few-Shot Segmentation Propagation with Guided Networks , 2018, ArXiv.

[63]  Yaozong Gao,et al.  Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests , 2016, IEEE Transactions on Medical Imaging.

[64]  Jonathan T. Barron,et al.  A category-level 3-D object dataset: Putting the Kinect to work , 2011, ICCV Workshops.

[65]  Junyu Dong,et al.  Augmenting depth estimation from deep convolutional neural network using multi-spectral photometric stereo , 2017, 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).

[66]  Yao Zhao,et al.  Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Pascal Fua,et al.  Are spatial and global constraints really necessary for segmentation? , 2011, 2011 International Conference on Computer Vision.

[68]  Yaozong Gao,et al.  Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT Images for Radiotherapy Planning , 2018, IEEE Transactions on Image Processing.

[69]  Ian D. Reid,et al.  RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[71]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[72]  Sabine Süsstrunk,et al.  Webly Supervised Semantic Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Roberto Cipolla,et al.  Semantic object classes in video: A high-definition ground truth database , 2009, Pattern Recognit. Lett..

[74]  Xiaochun Cao,et al.  Survey of recent progress in semantic image segmentation with CNNs , 2017, Science China Information Sciences.

[75]  Haibin Ling,et al.  Multi-Level Contextual RNNs With Attention Model for Scene Labeling , 2016, IEEE Transactions on Intelligent Transportation Systems.

[76]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[77]  Ronan Collobert,et al.  Learning to Refine Object Segments , 2016, ECCV.

[78]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[79]  Jérôme Louradour,et al.  Segmentation-free handwritten Chinese text recognition with LSTM-RNN , 2015, 2015 13th International Conference on Document Analysis and Recognition (ICDAR).

[80]  Ming-Hsuan Yang,et al.  Scene Parsing with Global Context Embedding , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[81]  Chuan Li,et al.  Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks , 2016, ECCV.

[82]  Yann LeCun,et al.  Indoor Semantic Segmentation using depth information , 2013, ICLR.

[83]  Linda G. Shapiro,et al.  ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation , 2018, ECCV.

[84]  Gang Yu,et al.  BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation , 2018, ECCV.

[85]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[86]  Bolei Zhou,et al.  Semantic Understanding of Scenes Through the ADE20K Dataset , 2016, International Journal of Computer Vision.

[87]  Wen Gao,et al.  Dense Relation Network: Learning Consistent and Context-Aware Representation for Semantic Image Segmentation , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[88]  Xiaoming Liu,et al.  Illuminating Pedestrians via Simultaneous Detection and Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[89]  Yaozong Gao,et al.  Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching , 2016, IEEE Transactions on Medical Imaging.

[90]  Eduardo Romera,et al.  ERFNet: Efficient Residual Factorized ConvNet for Real-Time Semantic Segmentation , 2018, IEEE Transactions on Intelligent Transportation Systems.

[91]  Yu Liu,et al.  A review of semantic segmentation using deep neural networks , 2017, International Journal of Multimedia Information Retrieval.

[92]  Tao Xu,et al.  SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation , 2017, Neuroinformatics.

[93]  Feng Han,et al.  Bottom-Up/Top-Down Image Parsing with Attribute Grammar , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[95]  Xiangyu Zhang,et al.  Large Kernel Matters — Improve Semantic Segmentation by Global Convolutional Network , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[96]  Christoph Meinel,et al.  Conditional Generative Refinement Adversarial Networks for Unbalanced Medical Image Semantic Segmentation , 2018, ArXiv.

[97]  Chi-Wing Fu,et al.  H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes , 2018, IEEE Transactions on Medical Imaging.

[98]  Dinggang Shen,et al.  Subspace Regularized Sparse Multitask Learning for Multiclass Neurodegenerative Disease Identification , 2016, IEEE Transactions on Biomedical Engineering.

[99]  Yoshua Bengio,et al.  ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks , 2015, ArXiv.

[100]  Quoc V. Le,et al.  Searching for MobileNetV3 , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[101]  Carsten Rother,et al.  Panoptic Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Ronan Collobert,et al.  Recurrent Convolutional Neural Networks for Scene Labeling , 2014, ICML.

[103]  Jun Fu,et al.  Stacked Deconvolutional Network for Semantic Segmentation , 2017, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[104]  Silvio Savarese,et al.  Beyond PASCAL: A benchmark for 3D object detection in the wild , 2014, IEEE Winter Conference on Applications of Computer Vision.

[105]  Zhen Li,et al.  LSTM-CF: Unifying Context Modeling and Fusion with LSTMs for RGB-D Scene Labeling , 2016, ECCV.

[106]  Yoshua Bengio,et al.  ReSeg: A Recurrent Neural Network-Based Model for Semantic Segmentation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[107]  Jitendra Malik,et al.  Hypercolumns for object segmentation and fine-grained localization , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Gang Wang,et al.  Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[109]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[110]  Camille Couprie,et al.  Semantic Segmentation using Adversarial Networks , 2016, NIPS 2016.

[111]  C. V. Jawahar,et al.  Scene Text Recognition using Higher Order Language Priors , 2009, BMVC.

[112]  Xin Zhao,et al.  Locality-Sensitive Deconvolution Networks with Gated Fusion for RGB-D Indoor Semantic Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[113]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[114]  Jitendra Malik,et al.  Simultaneous Detection and Segmentation , 2014, ECCV.

[115]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  Guosheng Lin,et al.  Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[117]  Gregory Shakhnarovich,et al.  Feedforward semantic segmentation with zoom-out features , 2014, CVPR.

[118]  Qi Zou,et al.  GraphNet: Learning Image Pseudo Annotations for Weakly-Supervised Semantic Segmentation , 2018, ACM Multimedia.

[119]  Jian Sun,et al.  ExFuse: Enhancing Feature Fusion for Semantic Segmentation , 2018, ECCV.

[120]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[121]  Anton van den Hengel,et al.  Real-time Semantic Image Segmentation via Spatial Sparsity , 2017, ArXiv.

[122]  Yassine Ruichek,et al.  Survey on semantic segmentation using deep learning techniques , 2019, Neurocomputing.

[123]  Yunchao Wei,et al.  STC: A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[124]  Ming-Hsuan Yang,et al.  Learning to Adapt Structured Output Space for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[125]  Meng Wang,et al.  Stochastic Multiview Hashing for Large-Scale Near-Duplicate Video Retrieval , 2017, IEEE Transactions on Multimedia.

[126]  Bolei Zhou,et al.  Scene Parsing through ADE20K Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[127]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[128]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[129]  Wenfu Wang,et al.  DSNet for Real-Time Driving Scene Semantic Segmentation , 2018, ArXiv.

[130]  Suha Kwak,et al.  Learning Pixel-Level Semantic Affinity with Image-Level Supervision for Weakly Supervised Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[131]  Kun Yu,et al.  DenseASPP for Semantic Segmentation in Street Scenes , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[132]  Meng Wang,et al.  Unsupervised t-Distributed Video Hashing and Its Deep Hashing Extension , 2017, IEEE Transactions on Image Processing.

[133]  Xiaofeng Zhu,et al.  A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis , 2014, NeuroImage.

[134]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[135]  Sven Behnke,et al.  Fast Semantic Segmentation of RGB-D Scenes with GPU-Accelerated Deep Neural Networks , 2014, KI.

[136]  Jian Sun,et al.  BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[137]  Sanja Fidler,et al.  Detect What You Can: Detecting and Representing Objects Using Holistic Models and Body Parts , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[138]  Jianxiong Xiao,et al.  SUN RGB-D: A RGB-D scene understanding benchmark suite , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[139]  Thomas S. Huang,et al.  Generative Image Inpainting with Contextual Attention , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[140]  Ming Yang,et al.  Conditional Generative Adversarial Network for Structured Domain Adaptation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[141]  Dariu Gavrila,et al.  PedCut: an iterative framework for pedestrian segmentation combining shape models and multiple data cues , 2013, BMVC.

[142]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[143]  Tingting Mu,et al.  Data Visualization with Structural Control of Global Cohort and Local Data Neighborhoods , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[144]  Won-Ki Jeong,et al.  FusionNet: A Deep Fully Residual Convolutional Neural Network for Image Segmentation in Connectomics , 2016, Frontiers in Computer Science.

[145]  Han Zhang,et al.  Co-Occurrent Features in Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[146]  Wei Liu,et al.  ParseNet: Looking Wider to See Better , 2015, ArXiv.

[147]  Larry S. Davis,et al.  Stacked U-Nets: A No-Frills Approach to Natural Image Segmentation , 2018, ArXiv.

[148]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[149]  Alain Trémeau,et al.  Residual Conv-Deconv Grid Network for Semantic Segmentation , 2017, BMVC.

[150]  Jian Sun,et al.  ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[151]  Trevor Darrell,et al.  Fully Convolutional Multi-Class Multiple Instance Learning , 2014, ICLR.

[152]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.

[153]  Roberto Cipolla,et al.  Fast-SCNN: Fast Semantic Segmentation Network , 2019, BMVC.

[154]  Xiaojuan Qi,et al.  ICNet for Real-Time Semantic Segmentation on High-Resolution Images , 2017, ECCV.

[155]  Xiaofeng Zhu,et al.  One-Step Multi-View Spectral Clustering , 2019, IEEE Transactions on Knowledge and Data Engineering.

[156]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[157]  Gen Li,et al.  DABNet: Depth-wise Asymmetric Bottleneck for Real-time Semantic Segmentation , 2019, BMVC.

[158]  Martin Thoma,et al.  A Survey of Semantic Segmentation , 2016, ArXiv.

[159]  Xuelong Li,et al.  Image Annotation by Multiple-Instance Learning With Discriminative Feature Mapping and Selection , 2014, IEEE Transactions on Cybernetics.

[160]  Eugenio Culurciello,et al.  LinkNet: Exploiting encoder representations for efficient semantic segmentation , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[161]  Vladimir Kolmogorov,et al.  "GrabCut": interactive foreground extraction using iterated graph cuts , 2004, ACM Trans. Graph..

[162]  George Papandreou,et al.  Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[163]  Wei-Shi Zheng,et al.  Improving Fast Segmentation With Teacher-Student Learning , 2018, BMVC.

[164]  Graham W. Taylor,et al.  Adaptive deconvolutional networks for mid and high level feature learning , 2011, 2011 International Conference on Computer Vision.

[165]  Christoph H. Lampert,et al.  Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation , 2016, ECCV.

[166]  Seungyong Lee,et al.  RDFNet: RGB-D Multi-level Residual Feature Fusion for Indoor Semantic Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[167]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[168]  Byron Boots,et al.  One-Shot Learning for Semantic Segmentation , 2017, BMVC.

[169]  Mennatullah Siam,et al.  ShuffleSeg: Real-time Semantic Segmentation Network , 2018, ArXiv.

[170]  Ulrich Neumann,et al.  Depth-aware CNN for RGB-D Segmentation , 2018, ECCV.

[171]  Roberto Cipolla,et al.  Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding , 2015, BMVC.

[172]  Thomas Deselaers,et al.  Measuring the Objectness of Image Windows , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[173]  Huimin Ma,et al.  Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[174]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[175]  Swami Sankaranarayanan,et al.  Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[176]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[177]  Shau-Shiun Jan,et al.  Combination of computer vision detection and segmentation for autonomous driving , 2018, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[178]  Marcus Liwicki,et al.  Scene labeling with LSTM recurrent neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[179]  Meng Wang,et al.  Multimodal Graph-Based Reranking for Web Image Search , 2012, IEEE Transactions on Image Processing.

[180]  Jingdong Wang,et al.  OCNet: Object Context Network for Scene Parsing , 2018, ArXiv.

[181]  Piotr Bilinski,et al.  Dense Decoder Shortcut Connections for Single-Pass Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[182]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[183]  De Xu,et al.  Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks , 2018, Applied Sciences.

[184]  Philip David,et al.  Domain Adaptation for Semantic Segmentation of Urban Scenes , 2017 .

[185]  Xiaojuan Qi,et al.  Augmented Feedback in Semantic Segmentation Under Image Level Supervision , 2016, ECCV.

[186]  Luc Van Gool,et al.  One-Shot Video Object Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[187]  Shuicheng Yan,et al.  A survey on deep learning-based fine-grained object classification and semantic segmentation , 2017, International Journal of Automation and Computing.

[188]  Antonio Criminisi,et al.  Object Class Segmentation using Random Forests , 2008, BMVC.

[189]  Mahmood Fathy,et al.  STFCN: Spatio-Temporal Fully Convolutional Neural Network for Semantic Segmentation of Street Scenes , 2016, ACCV Workshops.

[190]  Tao Chen,et al.  Semantic segmentation of RGBD images based on deep depth regression , 2018, Pattern Recognit. Lett..

[191]  Sepp Hochreiter,et al.  Speeding up Semantic Segmentation for Autonomous Driving , 2016 .

[192]  Yair Movshovitz-Attias,et al.  Synthetic depth-of-field with a single-camera mobile phone , 2018, ACM Trans. Graph..

[193]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[194]  José García Rodríguez,et al.  A Review on Deep Learning Techniques Applied to Semantic Segmentation , 2017, ArXiv.

[195]  Bastian Leibe,et al.  Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[196]  Ian D. Reid,et al.  Light-Weight RefineNet for Real-Time Semantic Segmentation , 2018, BMVC.

[197]  Andrew W. Senior,et al.  Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition , 2014, ArXiv.

[198]  Xuelong Li,et al.  Graph PCA Hashing for Similarity Search , 2017, IEEE Transactions on Multimedia.

[199]  Xiangyu Zhang,et al.  ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[200]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[201]  Subhransu Maji,et al.  Semantic contours from inverse detectors , 2011, 2011 International Conference on Computer Vision.

[202]  Ronan Collobert,et al.  From image-level to pixel-level labeling with Convolutional Networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[203]  Konstantinos Kamnitsas,et al.  Efficient multi‐scale 3D CNN with fully connected CRF for accurate brain lesion segmentation , 2016, Medical Image Anal..

[204]  Jitendra Malik,et al.  Learning Rich Features from RGB-D Images for Object Detection and Segmentation , 2014, ECCV.

[205]  Yao Zhao,et al.  Learning to segment with image-level annotations , 2016, Pattern Recognit..

[206]  Bernt Schiele,et al.  Generative Adversarial Text to Image Synthesis , 2016, ICML.

[207]  Kai Oliver Arras,et al.  People detection in RGB-D data , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[208]  Ali Farhadi,et al.  SeGAN: Segmenting and Generating the Invisible , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[209]  Xudong Jiang,et al.  Semantic Correlation Promoted Shape-Variant Context for Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[210]  Gang Wang,et al.  DAG-Recurrent Neural Networks for Scene Labeling , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[211]  Pablo Lamata,et al.  Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation , 2016, RAMBO+HVSMR@MICCAI.

[212]  Sven Behnke,et al.  Learning Object-Class Segmentation with Convolutional Neural Networks , 2012, ESANN.

[213]  Camille Couprie,et al.  Learning Hierarchical Features for Scene Labeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[214]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[215]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[216]  Paul Vernaza,et al.  Learning Random-Walk Label Propagation for Weakly-Supervised Semantic Segmentation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).