Numerical optimization of actuator trajectories for ITER hybrid scenario profile evolution

Optimal actuator trajectories for an ITER hybrid scenario ramp-up are computed using a numerical optimization method. For both L-mode and H-mode scenarios, the time trajectory of plasma current, EC heating and current drive distribution is determined that minimizes a chosen cost function, while satisfying constraints. The cost function is formulated to reflect two desired properties of the plasma q profile at the end of the ramp-up. The first objective is to maximize the ITG turbulence threshold by maximizing the volume-averaged s/q ratio. The second objective is to achieve a stationary q profile by having a flat loop voltage profile. Actuator and physics-derived constraints are included, imposing limits on plasma current, ramp rates, internal inductance and q profile. This numerical method uses the fast control-oriented plasma profile evolution code RAPTOR, which is successfully benchmarked against more complete CRONOS simulations for L-mode and H-mode mode ITER hybrid scenarios. It is shown that the optimized trajectories computed using RAPTOR also result in an improved ramp-up scenario for CRONOS simulations using the same input trajectories. Furthermore, the optimal trajectories are shown to vary depending on the precise timing of the L–H transition.

[1]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[2]  John D. Gaffey,et al.  Energetic ion distribution resulting from neutral beam injection in tokamaks , 1976, Journal of Plasma Physics.

[3]  Douglass E. Post,et al.  Penetration of energetic neutral beams into fusion plasmas , 1989 .

[4]  G. V. Pereverzew,et al.  ASTRA. An Automatic System for Transport Analysis in a Tokamak. , 1991 .

[5]  H. Bosch,et al.  ERRATUM: Improved formulas for fusion cross-sections and thermal reactivities , 1992 .

[6]  F. Romanelli,et al.  The linear threshold of the ion‐temperature‐gradient‐driven mode , 1993 .

[7]  T. Aniel,et al.  Validation of a new mixed Bohm/gyro-Bohm model for electron and ion heat transport against the ITER, Tore Supra and START database discharges , 1998 .

[8]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[9]  CurrentDrive,et al.  Chapter?8: Plasma operation and control , 1999 .

[10]  Olivier Sauter,et al.  Marginal β-limit for neoclassical tearing modes in JET H-mode discharges , 2002 .

[11]  M. R. Wade,et al.  High performance stationary discharges in the DIII-D tokamak , 2004 .

[12]  F. Imbeaux,et al.  On alpha particle effects in tokamaks with a current hole , 2005 .

[13]  T. Petrie,et al.  Influence of toroidal rotation on transport and stability in hybrid scenario plasmas in DIII-D , 2008 .

[14]  C. Kessel,et al.  Predictions of H-mode performance in ITER , 2008 .

[15]  D. A. Humphreys,et al.  ITER startup studies in the DIII-D tokamak , 2008 .

[16]  J. Lister,et al.  Experimental vertical stability studies for ITER performance and design guidance , 2009 .

[17]  C. Giroud,et al.  Improved confinement in JET hybrid discharges , 2012 .

[18]  J. Garcia,et al.  Critical behavior of magnetically confined plasma regimes. , 2010, Physical review letters.

[19]  J. Kinsey,et al.  Trapped gyro-Landau-fluid transport modeling of DIII-D hybrid discharges , 2010 .

[20]  E. Schuster,et al.  Ramp-Up-Phase Current-Profile Control of Tokamak Plasmas via Nonlinear Programming , 2010, IEEE Transactions on Plasma Science.

[21]  E. Joffrin,et al.  The CRONOS suite of codes for integrated tokamak modelling , 2010 .

[22]  J. Citrin,et al.  Impact of heating and current drive mix on the ITER hybrid scenario , 2010 .

[23]  F. Felici,et al.  Real-time physics-model-based simulation of the current density profile in tokamak plasmas , 2011 .

[24]  F. Imbeaux,et al.  Simulation of the neutral beam deposition within integrated tokamak modelling frameworks , 2011 .

[25]  N Hawkes,et al.  A key to improved ion core confinement in the JET tokamak: ion stiffness mitigation due to combined plasma rotation and low magnetic shear. , 2011, Physical review letters.

[26]  F. Felici,et al.  Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control , 2012 .

[27]  Lorenzo Figini,et al.  Potential of the ITER electron cyclotron equatorial launcher for heating and current drive at nominal and reduced fields , 2012 .

[28]  J. Stober,et al.  Predictive analysis of q-profile influence on transport in JET and ASDEX Upgrade hybrid scenarios , 2012 .

[29]  D. Jones,et al.  Outlook and Conclusions , 2013 .

[30]  F L Tabarés,et al.  Tritium inventory control during ITER operation under carbon plasma-facing components by nitrogen-based plasma chemistry: a review , 2013 .

[31]  J. Citrin,et al.  Optimizing the current ramp-up phase for the hybrid ITER scenario , 2012 .

[32]  J. Lister,et al.  Achieving and sustaining advanced scenarios in ITER modelled by CRONOS and DINA-CH , 2013 .

[33]  J. Contributors,et al.  On the different physical mechanisms for accessing hybrid scenarios on JET , 2013 .

[34]  F Jenko,et al.  Nonlinear stabilization of tokamak microturbulence by fast ions. , 2013, Physical review letters.

[35]  Y. Na,et al.  On confinement characteristics of the newly developed sawtooth-free plasmas in KSTAR tokamak , 2014 .