Structure-From-Motion in 3D Space Using 2D Lidars

This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging). In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method.

[1]  John J. Leonard,et al.  Robust real-time visual odometry for dense RGB-D mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[2]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[3]  Paul Newman,et al.  Automatic Self-calibration of a Full Field-of-View 3D n-Laser Scanner , 2010, ISER.

[4]  Sebastian Thrun,et al.  Junior: The Stanford entry in the Urban Challenge , 2008, J. Field Robotics.

[5]  Sanjiv Singh,et al.  The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, George Air Force Base, Victorville, California, USA , 2009, The DARPA Urban Challenge.

[6]  Luke Fletcher,et al.  A perception‐driven autonomous urban vehicle , 2008, J. Field Robotics.

[7]  Michael Bosse,et al.  Continuous 3D scan-matching with a spinning 2D laser , 2009, 2009 IEEE International Conference on Robotics and Automation.

[8]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[9]  In-So Kweon,et al.  Extrinsic calibration of a camera and a 2D laser without overlap , 2016, Robotics Auton. Syst..

[10]  A. Nuchter,et al.  6D SLAM with approximate data association , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[11]  Stephen Lin,et al.  Shading-Based Shape Refinement of RGB-D Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[13]  Robert Pless,et al.  Extrinsic calibration of a camera and laser range finder (improves camera calibration) , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[14]  Remo Pillat,et al.  A practical approach to robotic design for the DARPA Urban Challenge , 2008, J. Field Robotics.

[15]  Joel A. Hesch,et al.  A Laser-Aided Inertial Navigation System (L-INS) for human localization in unknown indoor environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[16]  Dieter Fox,et al.  RGB-D Object Recognition: Features, Algorithms, and a Large Scale Benchmark , 2013, Consumer Depth Cameras for Computer Vision.

[17]  Daniel Cremers,et al.  Dense visual SLAM for RGB-D cameras , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Sven Behnke,et al.  RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Gaurav S. Sukhatme,et al.  Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments , 2005, Auton. Robots.

[20]  Luke Fletcher,et al.  A perception‐driven autonomous urban vehicle , 2008, J. Field Robotics.

[21]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[22]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[23]  Jun-Sik Kim,et al.  Extrinsic Calibration of 2-D Lidars Using Two Orthogonal Planes , 2016, IEEE Transactions on Robotics.

[24]  In-So Kweon,et al.  High Quality Shape from a Single RGB-D Image under Uncalibrated Natural Illumination , 2013, 2013 IEEE International Conference on Computer Vision.

[25]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  J. Vallet,et al.  OBLIQUE HELICOPTER-BASED LASER SCANNING FOR DIGITAL TERRAIN MODELLING AND VISUALISATION OF GEOLOGICAL OUTCROPS , 2008 .

[27]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[28]  In-So Kweon,et al.  An Autonomous Driving System for Unknown Environments Using a Unified Map , 2015, IEEE Transactions on Intelligent Transportation Systems.

[29]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[30]  Michael Bosse,et al.  Zebedee: Design of a Spring-Mounted 3-D Range Sensor with Application to Mobile Mapping , 2012, IEEE Transactions on Robotics.

[31]  In-So Kweon,et al.  Autonomous homing based on laser-camera fusion system , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Ji Zhang,et al.  Visual-lidar odometry and mapping: low-drift, robust, and fast , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[34]  Paul Newman,et al.  Using laser range data for 3D SLAM in outdoor environments , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..