Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard

The lower and average spectral radii measure, respectively, the minimal and average growth rates of long products of matrices taken from a finite set. The logarithm of the average spectral radius is traditionally called the Lyapunov exponent. When one performs these products in the max-algebra, we obtain quantities that measure the performance of discrete event systems. We show that approximating the lower and average max-algebraic spectral radii is NP-hard.

[1]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[2]  E. Gardner,et al.  Zero temperature magnetization of a one-dimensional spin glass , 1985 .

[3]  Joel E. Cohen,et al.  Subadditivity, generalized products of random matrices and operations research , 1988 .

[4]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[5]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[6]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[7]  S. Gaubert Performance evaluation of (max, +) automata , 1995, IEEE Trans. Autom. Control..

[8]  E. Pap Null-Additive Set Functions , 1995 .

[9]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[10]  Jean Mairesse,et al.  Modeling and analysis of timed Petri nets using heaps of pieces , 1997 .

[11]  Stéphane Gaubert,et al.  Methods and Applications of (MAX, +) Linear Algebra , 1997, STACS.

[12]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[13]  Jean Mairesse,et al.  Modeling and analysis of timed Petri nets using heaps of pieces , 1997, 1997 European Control Conference (ECC).

[14]  John N. Tsitsiklis,et al.  When is a Pair of Matrices Mortal? , 1997, Inf. Process. Lett..

[15]  Jean-Marc Vincent,et al.  Dynamics of synchronized parallel systems , 1997 .

[16]  B. Gaujal,et al.  Idempotency: Computational issues in recursive stochastic systems , 1998 .

[17]  J. Gunawardena,et al.  Idempotency: List of Participants , 1998 .

[18]  J. Mairesse,et al.  Idempotency: Task resource models and (max, +) automata , 1998 .

[19]  Jean Mairesse,et al.  Asymptotic analysis of heaps of pieces and application to timed Petri nets , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[20]  F. Baccelli,et al.  Analytic expansions of max-plus Lyapunov exponents , 2000 .