Dynamic Texture Detection Based on Motion Analysis

Motion estimation is usually based on the brightness constancy assumption. This assumption holds well for rigid objects with a Lambertian surface, but it is less appropriate for fluid and gaseous materials. For these materials an alternative assumption is required. This work examines three possible alternatives: gradient constancy, color constancy and brightness conservation (under this assumption the brightness of an object can diffuse to its neighborhood). Brightness conservation and color constancy are found to be adequate models. We propose a method for detecting regions of dynamic texture in image sequences. Accurate segmentation into regions of static and dynamic texture is achieved using a level set scheme. The level set function separates each image into regions that obey brightness constancy and regions that obey the alternative assumption. We show that the method can be simplified to obtain a less robust but fast algorithm, capable of real-time performance. Experimental results demonstrate accurate segmentation by the full level set scheme, as well as by the simplified method. The experiments included challenging image sequences, in which color or geometry cues by themselves would be insufficient.

[1]  Payam Saisan,et al.  Dynamic texture recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[3]  Yong Man Ro,et al.  Texture Descriptors in MPEG-7 , 2001, CAIP.

[4]  Mark J. Huiskes,et al.  DynTex: A comprehensive database of dynamic textures , 2010, Pattern Recognit. Lett..

[5]  Ronen Basri,et al.  Multiscale segmentation by combining motion and intensity cues , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[7]  F. Ghoreishi,et al.  The Tau method and a new preconditioner , 2004 .

[8]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[9]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[10]  S. Nayar,et al.  Recognition of Dynamic Textures using Impulse Responses of State Variables , 2004 .

[11]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[12]  Dmitry Chetverikov,et al.  Detecting Regions of Dynamic Texture , 2007, SSVM.

[13]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Randal C. Nelson,et al.  Qualitative recognition of motion using temporal texture , 1992, CVGIP Image Underst..

[15]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[16]  Patrick Bouthemy,et al.  Motion characterization from temporal cooccurrences of local motion-based measures for video indexing , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[17]  Daniel Cremers,et al.  Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation , 2005, International Journal of Computer Vision.

[18]  Loong Fah Cheong,et al.  Synergizing spatial and temporal texture , 2002, IEEE Trans. Image Process..

[19]  Steven D. Blostein,et al.  Motion-based object segmentation and estimation using the MDL principle , 1995, IEEE Trans. Image Process..

[20]  Stefano Soatto,et al.  Spatially Homogeneous Dynamic Textures , 2004, ECCV.

[21]  Polina Golland,et al.  Motion from Color , 1997, Comput. Vis. Image Underst..

[22]  S. Suzuki,et al.  Feature extraction of temporal texture based on spatiotemporal motion trajectory , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[23]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[24]  P. Stumpf A gem from the past: Pleikart Stumpf's (1911) anticipation of the aperture problem, Reichardt detectors, and perceived motion loss at equiluminance. , 1996, Perception.

[25]  Richard P. Wildes,et al.  Qualitative Spatiotemporal Analysis Using an Oriented Energy Representation , 2000, ECCV.

[26]  A. Dervieux,et al.  A finite element method for the simulation of a Rayleigh-Taylor instability , 1980 .

[27]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[28]  Rachid Deriche,et al.  Geodesic active regions and level set methods for motion estimation and tracking , 2005, Comput. Vis. Image Underst..

[29]  Guillermo Sapiro,et al.  New Possibilities with Sobolev Active Contours , 2007, International Journal of Computer Vision.

[30]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[31]  Weixin Xie,et al.  Dynamic Texture Recognition by Spatio-Temporal Multiresolution Histograms , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[32]  Isabelle Herlin,et al.  A generalized optical flow constraint and its physical interpretation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[33]  Dmitry Chetverikov,et al.  A Brief Survey of Dynamic Texture Description and Recognition , 2005, CORES.

[34]  Thomas Brox,et al.  Variational Motion Segmentation with Level Sets , 2006, ECCV.

[35]  Dmitry Chetverikov,et al.  Dynamic Texture Recognition Using Normal Flow and Texture Regularity , 2005, IbPRIA.

[36]  John R. Smith,et al.  Video texture indexing using spatio-temporal wavelets , 2002, Proceedings. International Conference on Image Processing.

[37]  Sándor Fazekas Normal versus complete flow in dynamic texture recognition: a comparative study , 2005 .

[38]  V. Bruce,et al.  Visual perception: physiology, psychology and ecology. Fourth edition , 2003 .

[39]  T. Corpetti,et al.  ADAPTATION OF STANDARD OPTIC FLOW METHODS TO FLUID MOTION , 2000 .

[40]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[41]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[42]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[43]  Joachim Weickert,et al.  Illumination-Robust Variational Optical Flow with Photometric Invariants , 2007, DAGM-Symposium.

[44]  Patrick Bouthemy,et al.  Motion Recognition Using Nonparametric Image Motion Models Estimated from Temporal and Multiscale Cooccurrence Statistics , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[46]  Martin Szummer,et al.  Temporal texture modeling , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[47]  Anne Cuzol,et al.  Vortex and Source Particles for Fluid Motion Estimation , 2005, Scale-Space.

[48]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[49]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[50]  Daniel Cremers,et al.  Near Real-Time Motion Segmentation Using Graph Cuts , 2006, DAGM-Symposium.

[51]  Naoya Ohta,et al.  Optical flow detection by color images , 1990 .

[52]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[53]  Dejan Todorović,et al.  A Gem from the Past: Pleikart Stumpf's (1911) Anticipation of the Aperture Problem, Reichardt Detectors, and Perceived Motion Loss at Equiluminance , 1996 .

[54]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  Harry Shum,et al.  Synthesizing Dynamic Texture with Closed-Loop Linear Dynamic System , 2004, ECCV.

[56]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[57]  Anne Cuzol,et al.  A Low Dimensional Fluid Motion Estimator , 2007, International Journal of Computer Vision.

[58]  Nahum Kiryati,et al.  Piecewise-Smooth Dense Optical Flow via Level Sets , 2006, International Journal of Computer Vision.

[59]  Daniel Cremers,et al.  Dynamic texture segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[60]  Dmitry Chetverikov,et al.  Analysis and performance evaluation of optical flow features for dynamic texture recognition , 2007, Signal Process. Image Commun..

[61]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[62]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[63]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[64]  Jitendra Malik,et al.  Motion segmentation and tracking using normalized cuts , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[65]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[66]  Christoph Schnörr,et al.  Segmentation of visual motion by minimizing convex non-quadratic functionals , 1994, ICPR.