Power-law statistics and universal scaling in the absence of criticality.

Critical states are sometimes identified experimentally through power-law statistics or universal scaling functions. We show here that such features naturally emerge from networks in self-sustained irregular regimes away from criticality. In these regimes, statistical physics theory of large interacting systems predict a regime where the nodes have independent and identically distributed dynamics. We thus investigated the statistics of a system in which units are replaced by independent stochastic surrogates and found the same power-law statistics, indicating that these are not sufficient to establish criticality. We rather suggest that these are universal features of large-scale networks when considered macroscopically. These results put caution on the interpretation of scaling laws found in nature.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[3]  H E M Journal of Neurophysiology , 1938, Nature.

[4]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[5]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[6]  G. Miller,et al.  Some effects of intermittent silence. , 1957, The American journal of psychology.

[7]  Jstor The journal of conflict resolution , 1957 .

[8]  L. Goddard Information Theory , 1962, Nature.

[9]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[10]  Physical Review , 1965, Nature.

[11]  K. Mellanby How Nature works , 1978, Nature.

[12]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[13]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[14]  A. Sznitman Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated , 1984 .

[15]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[16]  H. Takayasu,et al.  Power-law mass distribution of aggregation systems with injection. , 1988, Physical review. A, General physics.

[17]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[18]  H. Takayasu,et al.  Steady-state distribution of generalized aggregation system with injection. , 1989, Physical review letters.

[19]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[20]  Physical Review Letters 63 , 1989 .

[21]  Misako Takayasu,et al.  Statistical properties of aggregation with injection , 1991 .

[22]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[23]  Wentian Li,et al.  Random texts exhibit Zipf's-law-like word frequency distribution , 1992, IEEE Trans. Inf. Theory.

[24]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[25]  D. Ruderman The statistics of natural images , 1994 .

[26]  J. Atick,et al.  Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus , 1995 .

[27]  W. Cowan,et al.  Annual Review of Neuroscience , 1995 .

[28]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[29]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[30]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems , 1998 .

[31]  Daniel A. Lidar,et al.  Is the Geometry of Nature Fractal? , 1998, Science.

[32]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality , 1998 .

[33]  Daniel A. Lidar,et al.  The Limited Scaling Range of Empirical Fractals , 1998 .

[34]  Alexander Dimitrov,et al.  Spatial Decorrelation in Orientation-Selective Cortical Cells , 1998, Neural Computation.

[35]  Dietrich Stauffer,et al.  Is the fossil record indicative of a critical system? , 1999, Adv. Complex Syst..

[36]  J. Sethna,et al.  Crackling noise , 2001, Nature.

[37]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[38]  Maria V. Sanchez-Vives,et al.  Adaptation and temporal decorrelation by single neurons in the primary visual cortex. , 2003, Journal of neurophysiology.

[39]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[40]  S. Grossberg,et al.  Psychological Review , 2003 .

[41]  BMC Neuroscience , 2003 .

[42]  Francesca Colaiori,et al.  Average shape of a fluctuation: universality in excursions of stochastic processes. , 2003, Physical review letters.

[43]  Average trajectory of returning walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[45]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[46]  J. L. Pedersen,et al.  Representations of the First Hitting Time Density of an Ornstein-Uhlenbeck Process , 2005 .

[47]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[48]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[49]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[50]  Tim P Vogels,et al.  Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons , 2005, The Journal of Neuroscience.

[51]  D. Chialvo Are our senses critical? , 2006 .

[52]  P. S. Dwyer Annals of Applied Probability , 2006 .

[53]  C. Bédard,et al.  Does the 1/f frequency scaling of brain signals reflect self-organized critical states? , 2006, Physical review letters.

[54]  M. Kardar Statistical physics of fields , 2007 .

[55]  Jianfeng Feng,et al.  Computational neuroscience , 1986, Behavioral and Brain Sciences.

[56]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[57]  A. Clauset,et al.  On the Frequency of Severe Terrorist Events , 2006, physics/0606007.

[58]  Viola Priesemann,et al.  Subsampling effects in neuronal avalanche distributions recorded in vivo , 2009, BMC Neuroscience.

[59]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[60]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[61]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[62]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[63]  J. Touboul,et al.  Can Power-Law Scaling and Neuronal Avalanches Arise from Stochastic Dynamics? , 2009, PloS one.

[64]  Marc Benayoun,et al.  Avalanches in a Stochastic Model of Spiking Neurons , 2010, PLoS Comput. Biol..

[65]  Hermann Riecke,et al.  Mechanisms of pattern decorrelation by recurrent neuronal circuits , 2010, Nature Neuroscience.

[66]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[67]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[68]  W. Singer,et al.  Neuronal avalanches in spontaneous activity in vivo. , 2010, Journal of neurophysiology.

[69]  W. Bialek,et al.  Are Biological Systems Poised at Criticality? , 2010, 1012.2242.

[70]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[71]  George Michailidis,et al.  Estimating Heavy-Tail Exponents Through Max Self–Similarity , 2006, IEEE Transactions on Information Theory.

[72]  Zach D. Haga,et al.  Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep , 2012, Front. Physio..

[73]  M. Porter,et al.  Critical Truths About Power Laws , 2012, Science.

[74]  John M. Beggs,et al.  Being Critical of Criticality in the Brain , 2012, Front. Physio..

[75]  W. Marsden I and J , 2012 .

[76]  John M. Beggs,et al.  Universal critical dynamics in high resolution neuronal avalanche data. , 2012, Physical review letters.

[77]  Olivier D. Faugeras,et al.  Noise-Induced Behaviors in Neural Mean Field Dynamics , 2011, SIAM J. Appl. Dyn. Syst..

[78]  Jean-Philippe Bouchaud,et al.  Weighted Kolmogorov-Smirnov test: accounting for the tails. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  E. Halgren,et al.  Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep , 2012, Proceedings of the National Academy of Sciences.

[80]  Woodrow L. Shew,et al.  The Functional Benefits of Criticality in the Cortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[81]  Jonathan Touboul,et al.  Large Deviations, Dynamics and Phase Transitions in Large Stochastic and Disordered Neural Networks , 2013, Journal of Statistical Physics.

[82]  G. Zaslavsky,et al.  Lévy Flights and Related Topics in Physics , 2013 .

[83]  David J Schwab,et al.  Zipf's law and criticality in multivariate data without fine-tuning. , 2013, Physical review letters.

[84]  Srdjan Ostojic,et al.  Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons , 2014, Nature Neuroscience.

[85]  J. Touboul Propagation of chaos in neural fields , 2011, 1108.2414.

[86]  Jonathan D. Touboul,et al.  On the Dynamics of Random Neuronal Networks , 2014, Journal of Statistical Physics.

[87]  J. Touboul Spatially Extended Networks with Singular Multi-scale Connectivity Patterns , 2013, Journal of Statistical Physics.

[88]  Thilo Gross,et al.  Self-organized criticality as a fundamental property of neural systems , 2014, Front. Syst. Neurosci..

[89]  C. Quiñinao,et al.  On a Kinetic Fitzhugh–Nagumo Model of Neuronal Network , 2015, 1503.00492.

[90]  Henrik Jeldtoft Jensen,et al.  Criticality as a signature of healthy neural systems: multi-scale experimental and computational studies , 2015 .

[91]  S. Sikdar Annual Review of Neuroscience, 2014 , 2016 .

[92]  Sara van de Geer,et al.  Ecole d'été de probabilités de Saint-Flour XLV , 2016 .

[93]  Peter E. Latham,et al.  Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Variables , 2016, PLoS Comput. Biol..

[94]  Rainer Engelken,et al.  A reanalysis of “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons” , 2016, F1000Research.

[95]  104 , 2018, The Devil's Fork.

[96]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[97]  29 , 2019, Critical Care Medicine.

[98]  Kindra M Kelly-Scumpia,et al.  51 , 2015, Tao te Ching.

[99]  Carter Ratcliff 36 , 2012, The Hatak Witches.

[100]  اسماعیل اصلی,et al.  31 , 2012, Tao te Ching.

[101]  최장석,et al.  25 , 1993, Magical Realism for Non-Believers.

[102]  R. K. Simpson Nature Neuroscience , 2022 .

[103]  October I Physical Review Letters , 2022 .