A chaotic Exploration of Aggregation Paradoxes

Paradoxes from statistics and decision sciences form amusing, yet intriguing mathematical puzzles. On deeper examination, they constitute serious problems that could cause us, unintentionally, to adopt inferior alternatives. It is indicated here how ideas form "dynamical chaos" and orbits of symmetry groups can be modified and combined to create a mathematical theory to understand, classify, and find new properties of these puzzling phenomena.

[1]  Peter C. Ordeshook,et al.  Game Theory And Political Theory , 1987 .

[2]  Jill Van Newenhizen The Borda method is most likely to respect the Condorcet principle , 1992 .

[3]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[4]  Peter C. Fishburn,et al.  Inverted orders for monotone scoring rules , 1981, Discret. Appl. Math..

[5]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[6]  Ross Honsberger More Mathematical Morsels , 1978 .

[7]  Peter C. Fishburn,et al.  Probabilities of election outcomes for large electorates , 1978 .

[8]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[9]  William V. Gehrlein,et al.  The expected probability of Condorcet's paradox , 1981 .

[10]  D. Saari,et al.  The Lack of Consistency for Statistical Decision Procedures , 1991 .

[11]  Donald G. Saari,et al.  NEWTON'S METHOD, CIRCLE MAPS, AND CHAOTIC MOTION , 1984 .

[12]  J. H. Smith AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .

[13]  R. Niemi,et al.  The Choice of Voting Systems , 1976 .

[14]  H. Nurmi Comparing Voting Systems , 1987 .

[15]  Philip D. Straffin,et al.  Topics in the theory of voting , 1980 .

[16]  R. McKelvey Intransitivities in multidimensional voting models and some implications for agenda control , 1976 .

[17]  Michael A. Trick,et al.  How hard is it to control an election? Math , 1992 .

[18]  Donald G. Saari,et al.  A dictionary for voting paradoxes , 1989 .

[19]  John R. Chamberlin An investigation into the relative manipulability of four voting systems , 1985 .

[20]  Ki Hang Kim Paradoxes in politics : Steven J. Brams, New York: Free press, 1976 , 1982 .

[21]  J. Kelly Social choice bibliography , 1991 .

[22]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[23]  Gerald H. Kramer,et al.  A dynamical model of political equilibrium , 1977 .

[24]  C. Blyth On Simpson's Paradox and the Sure-Thing Principle , 1972 .

[25]  I. Good,et al.  The Amalgamation and Geometry of Two-by-Two Contingency Tables , 1987 .

[26]  John J. Bartholdi,et al.  Single transferable vote resists strategic voting , 2015 .