An updated survey on the linear ordering problem for weighted or unweighted tournaments

In this paper, we survey some results, conjectures and open problems dealing with the combinatorial and algorithmic aspects of the linear ordering problem. This problem consists in finding a linear order which is at minimum distance from a (weighted or not) tournament. We show how it can be used to model an aggregation problem consisting of going from individual preferences defined on a set of candidates to a collective ranking of these candidates.

[1]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[2]  Leigh Tesfatsion,et al.  Fair division with uncertain needs and tastes , 1985 .

[3]  R. Kaas,et al.  A branch and bound algorithm for the acyclic subgraph problem , 1981 .

[4]  Patric R. J. Östergård,et al.  A tournament of order 14 with disjoint Banks and Slater sets , 2010, Discret. Appl. Math..

[5]  Jirí Matousek,et al.  Invitation to discrete mathematics , 1998 .

[6]  J. Moon,et al.  On Sets of Consistent Arcs in a Tournament , 1965, Canadian Mathematical Bulletin.

[7]  Olivier Hudry,et al.  A survey on the complexity of tournament solutions , 2009, Math. Soc. Sci..

[8]  Thomas Schwartz Cyclic tournaments and cooperative majority voting: A solution , 1990 .

[9]  Samuel Fiorini,et al.  Facets of the linear ordering polytope: A unification for the fence family through weighted graphs , 2006 .

[10]  Irène Charon,et al.  Self-tuning of the noising methods , 2009 .

[11]  O. Hudry,et al.  Ordres médians et ordres de Slater des tournois , 1996 .

[12]  John S. Decani A branch and bound algorithm for maximum likelihood paired comparison ranking , 1972 .

[13]  John E. Mitchell,et al.  Solving real-world linear ordering problems using a primal-dual interior point cutting plane method , 1996, Ann. Oper. Res..

[14]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[15]  Richard K. Congram Polynomially searchable exponential neighbourhoods for sequencing problems in combinatorial optimisation , 2000 .

[16]  Alain Guénoche,et al.  A Bonsaï Branch and Bound Method Applied to Voting Theory , 1996 .

[17]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[18]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[19]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[20]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[21]  W. Cook,et al.  On the Minimum Violations Ranking of a Tournament , 1986 .

[22]  M. Kendall Rank Correlation Methods , 1949 .

[23]  Edith Hemaspaandra,et al.  The complexity of Kemeny elections , 2005, Theor. Comput. Sci..

[24]  Mark D. Hansen Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems , 1989, 30th Annual Symposium on Foundations of Computer Science.

[25]  N. Alon,et al.  On the maximum number of Hamiltonian paths in tournaments , 2001 .

[26]  Claude Lemaréchal,et al.  The omnipresence of Lagrange , 2007, Ann. Oper. Res..

[27]  Olivier Hudry,et al.  NP-hardness results for the aggregation of linear orders into median orders , 2008, Ann. Oper. Res..

[28]  Paul D. Seymour,et al.  Packing directed circuits fractionally , 1995, Comb..

[29]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[30]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[31]  Gerhard Reinelt,et al.  On the acyclic subgraph polytope , 1985, Math. Program..

[32]  G. Nemhauser,et al.  Integer Programming , 2020 .

[33]  Alan M. Frieze,et al.  A new rounding procedure for the assignment problem with applications to dense graph arrangement problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[34]  M. Laguna,et al.  Scatter search for the linear ordering problem , 1999 .

[35]  Brian Alspach A Combinatorial Proof of a Conjecture of Goldberg and Moon , 1968, Canadian Mathematical Bulletin.

[36]  Noga Alon,et al.  Ranking Tournaments , 2006, SIAM J. Discret. Math..

[37]  E. Lawler A Comment on Minimum Feedback Arc Sets , 1964 .

[38]  Alain Guénoche Vainqueurs de Kemeny et tournois difficiles , 1996 .

[39]  Martin Grötschel,et al.  Acyclic Subdigraphs and Linear Orderings: Polytopes, Facets, and a Cutting Plane Algorithm , 1985 .

[40]  Irène Charon,et al.  Links between the Slater Index and the Ryser Index of Tournaments , 2003, Graphs Comb..

[41]  Samuel Fiorini,et al.  0, 1/2-Cuts and the Linear Ordering Problem: Surfaces That Define Facets , 2006, SIAM J. Discret. Math..

[42]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[43]  Wade D. Cook,et al.  Heuristics for ranking players in a round robin tournament , 1988, Comput. Oper. Res..

[44]  Samuel Fiorini,et al.  Determining the automorphism group of the linear ordering polytope , 2001, Discret. Appl. Math..

[45]  J. F. Marcotorchino,et al.  Optimisation en analyse ordinale des données , 1979 .

[46]  W. Art Chaovalitwongse,et al.  Revised GRASP with path-relinking for the linear ordering problem , 2011, J. Comb. Optim..

[47]  M. Kendall The treatment of ties in ranking problems. , 1945, Biometrika.

[48]  Mohammad Kaykobad,et al.  A new algorithm for ranking players of a round-robin tournament , 1995, Comput. Oper. Res..

[49]  Martin Grötschel,et al.  Facets of the linear ordering polytope , 1985, Math. Program..

[50]  Johann Dréo,et al.  Metaheuristics for Hard Optimization: Methods and Case Studies , 2005 .

[51]  Peter C. Fishburn,et al.  Induced binary probabilities and the linear ordering polytope: a status report , 1992 .

[52]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[53]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[54]  B. Monjardet Relations à «éloignement minimum» de relations binaires. Note bibliographique , 1979 .

[55]  Alantha Newman,et al.  Approximating the Maximum Acyclic Subgraph , 2000 .

[56]  Irène Charon,et al.  The noising methods: A generalization of some metaheuristics , 2001, Eur. J. Oper. Res..

[57]  Alain Guénoche,et al.  New results on the computation of median orders , 1997, Discret. Math..

[58]  Peter C. Fishburn,et al.  Facets of linear signed order polytopes , 2003, Discret. Appl. Math..

[59]  E. Zermelo Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .

[60]  Santosh S. Vempala,et al.  Fences Are Futile: On Relaxations for the Linear Ordering Problem , 2001, IPCO.

[61]  D. Younger Minimum Feedback Arc Sets for a Directed Graph , 1963 .

[62]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[63]  P. McMullen THE LINEAR ORDERING PROBLEM: ALGORITHMS AND APPLICATIONS (Research and Exposition in Mathematics 8) , 1987 .

[64]  U. Tüshaus Aggregation binärer Relationen in der qualitativen Datenanalyse , 1983 .

[65]  M. Kendall,et al.  ON THE METHOD OF PAIRED COMPARISONS , 1940 .

[66]  Satish Rao,et al.  New Approximation Techniques for Some Linear Ordering Problems , 2005, SIAM J. Comput..

[67]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[68]  Vojtech Rödl,et al.  Constructive Quasi-Ramsey Numbers and Tournament Ranking , 1999, SIAM J. Discret. Math..

[69]  G. Reinelt,et al.  Combinatorial optimization and small polytopes , 1996 .

[70]  Irène Charon,et al.  Slater orders and Hamiltonian paths of tournaments , 2000, Electron. Notes Discret. Math..

[71]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2006, J. Discrete Algorithms.

[72]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[73]  Claude Berge,et al.  The theory of graphs and its applications , 1962 .

[74]  Thomas Stützle,et al.  The linear ordering problem: Instances, search space analysis and algorithms , 2004, J. Math. Model. Algorithms.

[75]  Irène Charon,et al.  The Noising Methods: A Survey , 2002 .

[76]  Arnold B. Urken,et al.  Classics of social choice , 1995 .

[77]  Samuel Fiorini,et al.  Polyhedral combinatorics of order polytopes , 2001 .

[78]  Arthur H. Busch A Note on the Number of Hamiltonian Paths in Strong Tournaments , 2006, Electron. J. Comb..

[79]  J. Moon Topics on tournaments , 1968 .

[80]  Andrew Lim,et al.  Designing A Hybrid Genetic Algorithm for the Linear Ordering Problem , 2003, GECCO.

[81]  Fred S. Roberts,et al.  The Reversing Number of a Digraph , 1995, Discret. Appl. Math..

[82]  Hollis B. Chenery,et al.  International Comparisons of the Structure of Production , 1958 .

[83]  W. A. Thompson,et al.  Maximum-likelihood paired comparison rankings. , 1966, Biometrika.

[84]  R. Milner Mathematical Centre Tracts , 1976 .

[85]  David C. Mcgarvey A THEOREMI ON THE CONSTRUCTION OF VOTING PARADOXES , 1953 .

[86]  Gerhard Reinelt,et al.  The Linear Ordering Polytope , 2011 .

[87]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[88]  G. Reinelt,et al.  Optimal triangulation of large real world input-output matrices , 1983 .

[89]  Michel Breton,et al.  Covering relations, closest orderings and hamiltonian bypaths in tournaments , 1991 .

[90]  Lawrence Hubert,et al.  Maximum likelihood paired-comparison ranking and quadratic assignment , 1975 .

[91]  Li Qiao,et al.  Upsets in round robin tournaments , 1983, J. Comb. Theory, Ser. B.

[92]  P. Slater Inconsistencies in a schedule of paired comparisons , 1961 .

[93]  W. A. Thompson,et al.  Rankings from Paired Comparisons , 1964 .

[94]  L. Hubert SERIATION USING ASYMMETRIC PROXIMITY MEASURES , 1976 .

[95]  Bernard Monjardet,et al.  The median procedure in cluster analysis and social choice theory , 1981, Math. Soc. Sci..

[96]  Jean-François Laslier,et al.  Slaters's winners of a tournament may not be in the Banks set , 1991 .

[97]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[98]  Bernhard Korte,et al.  Zwei Algorithmen zur Lösung eines komplexen Reihenfolgeproblems , 1968, Unternehmensforschung.

[99]  Bernhard Korte,et al.  Approximative Algorithms for Discrete Optimization Problems , 1979 .

[100]  G. Chartrand,et al.  Graphs with Forbidden Subgraphs , 1971 .

[101]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[102]  Rafael Martí,et al.  Variable neighborhood search for the linear ordering problem , 2006, Comput. Oper. Res..

[103]  Joseph B. Kadane,et al.  Some Equivalence Classes in Paired Comparisons , 1966 .

[104]  Gerhard J. Woeginger,et al.  Banks winners in tournaments are difficult to recognize , 2003, Soc. Choice Welf..

[105]  B. Debord Caractérisation des matrices des préférences nettes et méthodes d'agrégation associées , 1987 .

[106]  Merrill M. Flood,et al.  Exact and heuristic algorithms for the weighted feedback arc set problem: A special case of the skew-symmetric quadratic assignment problem , 1990, Networks.

[107]  Olivier Hudry,et al.  Metric and Latticial Medians , 2009, Decision-making Process.

[108]  Rafael Martí,et al.  Context-Independent Scatter and Tabu Search for Permutation Problems , 2005, INFORMS J. Comput..

[109]  A. Guénoche,et al.  Median linear orders: Heuristics and a branch and bound algorithm , 1989 .

[110]  A. Lobstein,et al.  Algorithmic Complexity and communication problems , 1996 .

[111]  J. Spencer Nonconstructive methods in discrete mathematics , 1978 .

[112]  Bernard Monjardet Sur diverses formes de la \regle de Condorcet , 1990 .

[113]  A. Rubinstein Ranking the Participants in a Tournament , 1980 .

[114]  J. P. N. Phillips A PROCEDURE FOR DETERMINING SLATER'S i AND ALL NEAREST ADJOINING ORDERS , 1967 .

[115]  Noga Alon The maximum number of Hamiltonian paths in tournaments , 1990, Comb..

[116]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[117]  Joel Spencer Optimal ranking of tournaments , 1971, Networks.

[118]  Irène Charon,et al.  A branch-and-bound algorithm to solve the linear ordering problem for weighted tournaments , 2006, Discret. Appl. Math..

[119]  Olivier Hudry Nombre maximum d'ordres de Slater des tournois T vérifiant sigma(T) = 1 , 1997 .

[120]  Röbbe Wünschiers,et al.  An algorithmic approach to analyse genetic networks and biological energy production: an introduction and contribution where OR meets biology , 2009 .

[121]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[122]  Vincent Conitzer,et al.  Computing Slater Rankings Using Similarities among Candidates , 2006, AAAI.

[123]  Mutsunori Yagiura,et al.  Efficient local search algorithms for the linear ordering problem , 2010, Int. Trans. Oper. Res..

[124]  Irène Charon-Fournier,et al.  Utilisation des scores dans des méthodes exactes déterminant les ordres médians de tournois , 1992 .

[125]  Teh-Hsing Wei,et al.  The algebraic foundations of ranking theory , 1952 .

[126]  A. Guénoche,et al.  Selecting varieties using a series of trials and a combinatorial ordering method , 1994 .

[127]  Joseph Naor,et al.  Sorting, Minimal Feedback Sets, and Hamilton Paths in Tournaments , 1990, SIAM J. Discret. Math..

[128]  Bernard Monjardet,et al.  Tournois et ordres n~dians pour une opinion , 1973 .

[129]  Abraham Duarte,et al.  Tabu search for the linear ordering problem with cumulative costs , 2011, Comput. Optim. Appl..

[130]  Abilio Lucena,et al.  Lagrangian heuristics for the linear ordering problem , 2004 .

[131]  Eric Allender,et al.  Complexity , 2007, Scholarpedia.

[132]  Alain Guénoche,et al.  How to Choose According to Partial Evaluations? , 1994, IPMU.

[133]  Brian Alspach,et al.  Cycles of Each Length in Regular Tournaments , 1967, Canadian Mathematical Bulletin.

[134]  Joseph Naor,et al.  Divide-and-conquer approximation algorithms via spreading metrics , 2000, JACM.

[135]  Dr.J. P. N. Phillips ON AN ALGORITHM OF SMITH AND PAYNE FOR DETERMINING SLATER'S i AND ALL NEAREST ADJOINING ORDERS , 1976 .

[136]  P. Fishburn Condorcet Social Choice Functions , 1977 .

[137]  Olivier Hudry,et al.  Encadrement de l'indice de Slater d'un tournoi à l'aide de ses scores , 1992 .

[138]  M. R. Rao,et al.  Majority Decisions and Transitivity: Some Special Cases , 1976 .

[139]  T. Klastorin,et al.  Optimal Weighted Ancestry Relationships , 1974 .

[140]  Alantha Newman Cuts and Orderings: On Semidefinite Relaxations for the Linear Ordering Problem , 2004, APPROX-RANDOM.

[141]  Jayant Kalagnanam,et al.  A Computational Study of the Kemeny Rule for Preference Aggregation , 2004, AAAI.

[142]  Irène Charon,et al.  Maximum Distance Between Slater Orders and Copeland Orders of Tournaments , 2011, Order.

[143]  M. Breton,et al.  The Bipartisan Set of a Tournament Game , 1993 .

[144]  Zeev Nutov,et al.  on the Integral Dicycle Packings and Covers and the Linear ordering Polytope , 1995, Discret. Appl. Math..

[145]  Refael Hassin,et al.  Approximations for the Maximum Acyclic Subgraph Problem , 1994, Inf. Process. Lett..

[146]  Carlos Garc,et al.  A Variable Neighborhood Search for Solving the Linear Ordering Problem , 2001 .

[147]  Gerhard Reinelt,et al.  Algorithmic Aspects of Using Small Instance Relaxations in Parallel Branch-and-Cut , 2001, Algorithmica.

[148]  J. Mitchell,et al.  Solving Linear Ordering Problems with a Combined Interior Point/Simplex Cutting Plane Algorithm , 2000 .

[149]  Jean Fonlupt,et al.  Compositions of Graphs and Polyhedra IV: Acyclic Spanning Subgraphs , 1994, SIAM J. Discret. Math..

[150]  Xuemin Lin,et al.  A Fast and Effective Heuristic for the Feedback Arc Set Problem , 1993, Inf. Process. Lett..

[151]  J. Bermond Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux , 1972 .

[152]  M. Raghavachari,et al.  Comparing the efficacy of ranking methods for multiple round-robin tournaments , 2000, Eur. J. Oper. Res..

[153]  A. F. Smith,et al.  AN ALGORITHM FOR DETERMINING SLATER'S i AND ALL NEAREST ADJOINING ORDERS , 1974 .

[154]  H. Landau On dominance relations and the structure of animal societies: I. Effect of inherent characteristics , 1951 .

[155]  M. Kano,et al.  Ranking the vertices of a paired comparison digraph with normal completeness theorems , 1983 .

[156]  C. S. Colantoni,et al.  Majority Rule Under Transitivity Constraints , 1973 .

[157]  Carsten Thomassen,et al.  Counterexamples to Adám's conjecture on arc reversals in directed graphs , 1987, J. Comb. Theory, Ser. B.

[158]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[159]  Michel X. Goemans,et al.  The Strongest Facets of the Acyclic Subgraph Polytope Are Unknown , 1996, IPCO.

[160]  Michael Jünger,et al.  Polyhedral combinatorics and the acyclic subdigraph problem , 1985 .

[161]  Bonnie Berger,et al.  Approximation alogorithms for the maximum acyclic subgraph problem , 1990, SODA '90.

[162]  Joseph Naor,et al.  Approximating Minimum Feedback Sets and Multicuts in Directed Graphs , 1998, Algorithmica.

[163]  Lawrence Hubert,et al.  Applications of combinatorial programming to data analysis: Seriation using asymmetric proximity measures , 1977 .

[164]  Samuel Fiorini,et al.  How to recycle your facets , 2006, Discret. Optim..

[165]  Richard Edwin Stearns,et al.  The Voting Problem , 1959 .

[166]  J. Colomer,et al.  Social choice in medieval Europe , 2008 .

[167]  Jon Lee,et al.  More facets from fences for linear ordering and acyclic subgraph polytopes , 1994, Discret. Appl. Math..

[168]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[169]  Wenceslas Fernandez de la Vega,et al.  On the maximum cardinality of a consistent set of arcs in a random tournament , 1983, J. Comb. Theory, Ser. B.

[170]  Anton Kotzig,et al.  On the maximal order of cyclicity of antisymmetric directed graphs , 1975, Discret. Math..

[171]  Anders Yeo,et al.  The Minimum Feedback Arc Set Problem is NP-Hard for Tournaments , 2006, Combinatorics, Probability and Computing.

[172]  H. Young Condorcet's Theory of Voting , 1988, American Political Science Review.

[173]  Gerhard Reinelt,et al.  A Cutting Plane Algorithm for the Linear Ordering Problem , 1984, Oper. Res..

[174]  Giovanni Righini A branch-and-bound algorithm for the linear ordering problem with cumulative costs , 2008, Eur. J. Oper. Res..

[175]  Alain Guénoche Un algorithme pour pallier l'effet Condorcet , 1977 .

[176]  Peter Greistorfer,et al.  Experimental pool design: input, output and combination strategies for scatter search , 2004 .

[177]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[178]  K. B. Reid Monochromatic reachability, complementary cycles, and single arc reversals in tournaments , 1984 .

[179]  D. Black The theory of committees and elections , 1959 .

[180]  Bonnie Berger,et al.  Tight Bounds for the Maximum Acyclic Subgraph Problem , 1997, J. Algorithms.

[181]  John D. Dixon The Maximum Order of the Group of a Tournament , 1967, Canadian Mathematical Bulletin.

[182]  Garth Isaak,et al.  Tournaments as Feedback Arc Sets , 1995, Electron. J. Comb..

[183]  Jean-Marie Blin,et al.  Note—A Note on Majority Rule under Transitivity Constraints , 1974 .

[184]  Zeev Nutov,et al.  On non-{0, 1/2, 1} extreme points of the generalized transitive tournament polytope , 1996 .

[185]  John E. Mitchell,et al.  Computational Experience with an Interior Point Cutting Plane Algorithm , 1999, SIAM J. Optim..

[186]  Walter Oberhofer,et al.  Zur Triangulation von Input-Output-Matrizen , 1968 .

[187]  Fred W. Glover,et al.  An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem , 2001, J. Glob. Optim..

[188]  Irène Charon,et al.  Note: A 16-vertex Tournament for Which Banks Set and Slater Set Are Disjoint , 1997, Discret. Appl. Math..

[189]  J. Banks Sophisticated voting outcomes and agenda control , 1984 .

[190]  Christian Klamler A comparison of the Dodgson method and the Copeland rule , 2003 .

[191]  Vojtech Rödl,et al.  Tournament Ranking with Expected Profit in Polynomial Time , 1988, SIAM J. Discret. Math..

[192]  Gérard Cornuéjols,et al.  The traveling salesman problem on a graph and some related integer polyhedra , 1985, Math. Program..

[193]  Noga Alon,et al.  Hardness of fully dense problems , 2007, Inf. Comput..

[194]  Nicholas R. Miller A New Solution Set for Tournaments and Majority Voting: Further Graph- Theoretical Approaches to the Theory of Voting , 1980 .

[195]  Carsten Thomassen Transversals of circuits in the lexicographic product of directed graphs , 1975 .

[196]  J. Decani,et al.  Maximum likelihood paired comparison ranking by linear programming , 1969 .

[197]  Yoshiko Wakabayashi The Complexity of Computing Medians of Relations , 1998 .

[198]  Bhaskar Dutta Covering sets and a new condorcet choice correspondence , 1988 .

[199]  William F. Ames,et al.  Numerical and applied mathematics , 1989 .

[200]  Mathieu Koppen,et al.  Random utility representation of binary choice probabilities: critical graphs yielding critical necessary conditions , 1995 .

[201]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[202]  K. Reid,et al.  On Sets of Arcs Containing No Cycles in a Tournament* , 1969, Canadian Mathematical Bulletin.

[203]  S. Goddard Ranking in Tournaments and Group Decisionmaking , 1983 .

[204]  Jean-Claude Bermond The circuit - hypergraph of a tournament , 1975 .

[205]  Thomas Stützle,et al.  Search Space Analysis of the Linear Ordering Problem , 2003, EvoWorkshops.

[206]  Jan Karel Lenstra,et al.  Sequencing by enumerative methods , 1977 .

[207]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[208]  Bernard Debord Axiomatisation de procédures d'agrégation de préférences , 1987 .

[209]  Anne Germa,et al.  Random generation of tournaments and asymmetric graphs with given out-degrees , 1996 .

[210]  Gerhard Reinelt,et al.  Branch-and-Bound , 2011 .

[211]  H. Landau On dominance relations and the structure of animal societies: III The condition for a score structure , 1953 .

[212]  Thomas C. Ratliff A comparison of Dodgson's method and Kemeny's rule , 2001, Soc. Choice Welf..

[213]  Gerhard Reinelt,et al.  The linear ordering problem: algorithms and applications , 1985 .

[214]  H. P. Young,et al.  On permutations and permutation polytopes , 1978 .

[215]  J. Spencer Ten lectures on the probabilistic method , 1987 .

[216]  Richard K. Guy,et al.  A coarseness conjecture of Erdös , 1967 .

[217]  David P. Williamson,et al.  Deterministic Algorithms for Rank Aggregation and Other Ranking and Clustering Problems , 2007, WAOA.

[218]  Irène Charon,et al.  Lamarckian genetic algorithmsapplied to the aggregation of preferences , 1998, Ann. Oper. Res..

[219]  D. Coppersmith,et al.  Ordering by weighted number of wins gives a good ranking for weighted tournaments , 2006, SODA 2006.

[220]  James F. Korsh,et al.  A branch search algorithm for maximum likelihood paired comparison ranking , 1974 .

[221]  H. Lenstra,et al.  The acyclic subgraph problem , 1973 .

[222]  Rafael Martí,et al.  Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..

[223]  A. Lempel,et al.  Minimum Feedback Arc and Vertex Sets of a Directed Graph , 1966 .

[224]  Christoph Buchheim,et al.  Exact Algorithms for the Quadratic Linear Ordering Problem , 2010, INFORMS J. Comput..

[225]  Jean-François Laslier,et al.  Tournament Solutions And Majority Voting , 1997 .

[226]  Stefan Chanas,et al.  A new heuristic algorithm solving the linear ordering problem , 1996, Comput. Optim. Appl..

[227]  Finn E. Kydland Hierarchical Decomposition in Linear Economic Models , 1975 .

[228]  Eberhard Girlich,et al.  New Facets of the Linear Ordering Polytope , 1999, SIAM J. Discret. Math..

[229]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[230]  Christian Klamler,et al.  The Dodgson ranking and its relation to Kemeny’s method and Slater’s rule , 2004, Soc. Choice Welf..

[231]  P.-C.-F. Daunou,et al.  Mémoire sur les élections au scrutin , 1803 .

[232]  Gerhard Reinelt,et al.  A note on small linear-ordering polytopes , 1993, Discret. Comput. Geom..

[233]  M. Barbut Note sur les ordres totaux à distance minimum d'une relation binaire donnée (cas fini - distance de la différence symétrique) , 1966 .

[234]  Saket Saurabh,et al.  Parameterized algorithms for feedback set problems and their duals in tournaments , 2006, Theor. Comput. Sci..

[235]  Bruno Leclerc,et al.  Ensembles ordonnés finis : concepts, résultats, usages , 2007 .

[236]  Olivier Hudry A note on “Banks winners in tournaments are difficult to recognize” by G. J. Woeginger , 2004, Soc. Choice Welf..

[237]  Christian Klamler Kemeny's rule and Slater''s rule: A binary comparison , 2003 .

[238]  M. Trick,et al.  Voting schemes for which it can be difficult to tell who won the election , 1989 .

[239]  D. R. Fulkerson UPSETS IN ROUND ROBIN TOURNAMENTS , 1965 .

[240]  Xuemin Lin,et al.  A heuristic for the feedback arc set problem , 1995, Australas. J Comb..

[241]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[242]  Jean-Claude Bermond,et al.  Une Heuristique pour le Calcul de l'Indice de Transitivité d'un Tournoi , 1976, RAIRO Theor. Informatics Appl..

[243]  Robert Sugden,et al.  Condorcet: Foundations of Social Choice and Political Theory , 1994 .

[244]  Andrew B. Whinston,et al.  Discriminant Functions and Majority Voting , 1975 .

[245]  John Doyle,et al.  Ranking players in multiple tournaments , 1996, Comput. Oper. Res..

[246]  Matteo Fischetti,et al.  The Linear Ordering Problem with cumulative costs , 2008, Eur. J. Oper. Res..

[247]  J. P. N. Phillips A FURTHER PROCEDURE FOR DETERMINING SLATER'S i AND ALL NEAREST ADJOINING ORDERS , 1969 .

[248]  Samuel Fiorini,et al.  The Biorder Polytope , 2004, Order.

[249]  Svatopluk Poljak,et al.  A polynomial time heuristic for certain subgraph optimization problems with guaranteed worst case bound , 1986, Discret. Math..

[250]  J. Hardouin Duparc Quelques résultats sur « l'indice de transitivité » de certains tournois , 1975 .

[251]  Irène Charon,et al.  A survey on the linear ordering problem for weighted or unweighted tournaments , 2007, 4OR.

[252]  Olivier Hudry,et al.  On the complexity of Slater's problems , 2010, Eur. J. Oper. Res..