An updated survey on the linear ordering problem for weighted or unweighted tournaments
暂无分享,去创建一个
[1] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[2] Leigh Tesfatsion,et al. Fair division with uncertain needs and tastes , 1985 .
[3] R. Kaas,et al. A branch and bound algorithm for the acyclic subgraph problem , 1981 .
[4] Patric R. J. Östergård,et al. A tournament of order 14 with disjoint Banks and Slater sets , 2010, Discret. Appl. Math..
[5] Jirí Matousek,et al. Invitation to discrete mathematics , 1998 .
[6] J. Moon,et al. On Sets of Consistent Arcs in a Tournament , 1965, Canadian Mathematical Bulletin.
[7] Olivier Hudry,et al. A survey on the complexity of tournament solutions , 2009, Math. Soc. Sci..
[8] Thomas Schwartz. Cyclic tournaments and cooperative majority voting: A solution , 1990 .
[9] Samuel Fiorini,et al. Facets of the linear ordering polytope: A unification for the fence family through weighted graphs , 2006 .
[10] Irène Charon,et al. Self-tuning of the noising methods , 2009 .
[11] O. Hudry,et al. Ordres médians et ordres de Slater des tournois , 1996 .
[12] John S. Decani. A branch and bound algorithm for maximum likelihood paired comparison ranking , 1972 .
[13] John E. Mitchell,et al. Solving real-world linear ordering problems using a primal-dual interior point cutting plane method , 1996, Ann. Oper. Res..
[14] William J. Cook,et al. Combinatorial optimization , 1997 .
[15] Richard K. Congram. Polynomially searchable exponential neighbourhoods for sequencing problems in combinatorial optimisation , 2000 .
[16] Alain Guénoche,et al. A Bonsaï Branch and Bound Method Applied to Voting Theory , 1996 .
[17] Moni Naor,et al. Rank aggregation methods for the Web , 2001, WWW '01.
[18] Rolf Drechsler,et al. Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.
[19] P. Pardalos,et al. Handbook of Combinatorial Optimization , 1998 .
[20] Nicolas de Condorcet. Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .
[21] W. Cook,et al. On the Minimum Violations Ranking of a Tournament , 1986 .
[22] M. Kendall. Rank Correlation Methods , 1949 .
[23] Edith Hemaspaandra,et al. The complexity of Kemeny elections , 2005, Theor. Comput. Sci..
[24] Mark D. Hansen. Approximation algorithms for geometric embeddings in the plane with applications to parallel processing problems , 1989, 30th Annual Symposium on Foundations of Computer Science.
[25] N. Alon,et al. On the maximum number of Hamiltonian paths in tournaments , 2001 .
[26] Claude Lemaréchal,et al. The omnipresence of Lagrange , 2007, Ann. Oper. Res..
[27] Olivier Hudry,et al. NP-hardness results for the aggregation of linear orders into median orders , 2008, Ann. Oper. Res..
[28] Paul D. Seymour,et al. Packing directed circuits fractionally , 1995, Comb..
[29] Gregory Gutin,et al. Digraphs - theory, algorithms and applications , 2002 .
[30] Giorgio Gambosi,et al. Complexity and Approximation , 1999, Springer Berlin Heidelberg.
[31] Gerhard Reinelt,et al. On the acyclic subgraph polytope , 1985, Math. Program..
[32] G. Nemhauser,et al. Integer Programming , 2020 .
[33] Alan M. Frieze,et al. A new rounding procedure for the assignment problem with applications to dense graph arrangement problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[34] M. Laguna,et al. Scatter search for the linear ordering problem , 1999 .
[35] Brian Alspach. A Combinatorial Proof of a Conjecture of Goldberg and Moon , 1968, Canadian Mathematical Bulletin.
[36] Noga Alon,et al. Ranking Tournaments , 2006, SIAM J. Discret. Math..
[37] E. Lawler. A Comment on Minimum Feedback Arc Sets , 1964 .
[38] Alain Guénoche. Vainqueurs de Kemeny et tournois difficiles , 1996 .
[39] Martin Grötschel,et al. Acyclic Subdigraphs and Linear Orderings: Polytopes, Facets, and a Cutting Plane Algorithm , 1985 .
[40] Irène Charon,et al. Links between the Slater Index and the Ryser Index of Tournaments , 2003, Graphs Comb..
[41] Samuel Fiorini,et al. 0, 1/2-Cuts and the Linear Ordering Problem: Surfaces That Define Facets , 2006, SIAM J. Discret. Math..
[42] Panos M. Pardalos,et al. Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.
[43] Wade D. Cook,et al. Heuristics for ranking players in a round robin tournament , 1988, Comput. Oper. Res..
[44] Samuel Fiorini,et al. Determining the automorphism group of the linear ordering polytope , 2001, Discret. Appl. Math..
[45] J. F. Marcotorchino,et al. Optimisation en analyse ordinale des données , 1979 .
[46] W. Art Chaovalitwongse,et al. Revised GRASP with path-relinking for the linear ordering problem , 2011, J. Comb. Optim..
[47] M. Kendall. The treatment of ties in ranking problems. , 1945, Biometrika.
[48] Mohammad Kaykobad,et al. A new algorithm for ranking players of a round-robin tournament , 1995, Comput. Oper. Res..
[49] Martin Grötschel,et al. Facets of the linear ordering polytope , 1985, Math. Program..
[50] Johann Dréo,et al. Metaheuristics for Hard Optimization: Methods and Case Studies , 2005 .
[51] Peter C. Fishburn,et al. Induced binary probabilities and the linear ordering polytope: a status report , 1992 .
[52] S. Shapiro,et al. Mathematics without Numbers , 1993 .
[53] Noga Alon,et al. The Probabilistic Method, Second Edition , 2004 .
[54] B. Monjardet. Relations à «éloignement minimum» de relations binaires. Note bibliographique , 1979 .
[55] Alantha Newman,et al. Approximating the Maximum Acyclic Subgraph , 2000 .
[56] Irène Charon,et al. The noising methods: A generalization of some metaheuristics , 2001, Eur. J. Oper. Res..
[57] Alain Guénoche,et al. New results on the computation of median orders , 1997, Discret. Math..
[58] Peter C. Fishburn,et al. Facets of linear signed order polytopes , 2003, Discret. Appl. Math..
[59] E. Zermelo. Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .
[60] Santosh S. Vempala,et al. Fences Are Futile: On Relaxations for the Linear Ordering Problem , 2001, IPCO.
[61] D. Younger. Minimum Feedback Arc Sets for a Directed Graph , 1963 .
[62] Vijay V. Vazirani,et al. Approximation Algorithms , 2001, Springer Berlin Heidelberg.
[63] P. McMullen. THE LINEAR ORDERING PROBLEM: ALGORITHMS AND APPLICATIONS (Research and Exposition in Mathematics 8) , 1987 .
[64] U. Tüshaus. Aggregation binärer Relationen in der qualitativen Datenanalyse , 1983 .
[65] M. Kendall,et al. ON THE METHOD OF PAIRED COMPARISONS , 1940 .
[66] Satish Rao,et al. New Approximation Techniques for Some Linear Ordering Problems , 2005, SIAM J. Comput..
[67] Mihalis Yannakakis,et al. Optimization, approximation, and complexity classes , 1991, STOC '88.
[68] Vojtech Rödl,et al. Constructive Quasi-Ramsey Numbers and Tournament Ranking , 1999, SIAM J. Discret. Math..
[69] G. Reinelt,et al. Combinatorial optimization and small polytopes , 1996 .
[70] Irène Charon,et al. Slater orders and Hamiltonian paths of tournaments , 2000, Electron. Notes Discret. Math..
[71] Rolf Niedermeier,et al. Fixed-parameter tractability results for feedback set problems in tournaments , 2006, J. Discrete Algorithms.
[72] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[73] Claude Berge,et al. The theory of graphs and its applications , 1962 .
[74] Thomas Stützle,et al. The linear ordering problem: Instances, search space analysis and algorithms , 2004, J. Math. Model. Algorithms.
[75] Irène Charon,et al. The Noising Methods: A Survey , 2002 .
[76] Arnold B. Urken,et al. Classics of social choice , 1995 .
[77] Samuel Fiorini,et al. Polyhedral combinatorics of order polytopes , 2001 .
[78] Arthur H. Busch. A Note on the Number of Hamiltonian Paths in Strong Tournaments , 2006, Electron. J. Comb..
[79] J. Moon. Topics on tournaments , 1968 .
[80] Andrew Lim,et al. Designing A Hybrid Genetic Algorithm for the Linear Ordering Problem , 2003, GECCO.
[81] Fred S. Roberts,et al. The Reversing Number of a Digraph , 1995, Discret. Appl. Math..
[82] Hollis B. Chenery,et al. International Comparisons of the Structure of Production , 1958 .
[83] W. A. Thompson,et al. Maximum-likelihood paired comparison rankings. , 1966, Biometrika.
[84] R. Milner. Mathematical Centre Tracts , 1976 .
[85] David C. Mcgarvey. A THEOREMI ON THE CONSTRUCTION OF VOTING PARADOXES , 1953 .
[86] Gerhard Reinelt,et al. The Linear Ordering Polytope , 2011 .
[87] Panos M. Pardalos,et al. Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.
[88] G. Reinelt,et al. Optimal triangulation of large real world input-output matrices , 1983 .
[89] Michel Breton,et al. Covering relations, closest orderings and hamiltonian bypaths in tournaments , 1991 .
[90] Lawrence Hubert,et al. Maximum likelihood paired-comparison ranking and quadratic assignment , 1975 .
[91] Li Qiao,et al. Upsets in round robin tournaments , 1983, J. Comb. Theory, Ser. B.
[92] P. Slater. Inconsistencies in a schedule of paired comparisons , 1961 .
[93] W. A. Thompson,et al. Rankings from Paired Comparisons , 1964 .
[94] L. Hubert. SERIATION USING ASYMMETRIC PROXIMITY MEASURES , 1976 .
[95] Bernard Monjardet,et al. The median procedure in cluster analysis and social choice theory , 1981, Math. Soc. Sci..
[96] Jean-François Laslier,et al. Slaters's winners of a tournament may not be in the Banks set , 1991 .
[97] Frank Thomson Leighton,et al. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[98] Bernhard Korte,et al. Zwei Algorithmen zur Lösung eines komplexen Reihenfolgeproblems , 1968, Unternehmensforschung.
[99] Bernhard Korte,et al. Approximative Algorithms for Discrete Optimization Problems , 1979 .
[100] G. Chartrand,et al. Graphs with Forbidden Subgraphs , 1971 .
[101] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[102] Rafael Martí,et al. Variable neighborhood search for the linear ordering problem , 2006, Comput. Oper. Res..
[103] Joseph B. Kadane,et al. Some Equivalence Classes in Paired Comparisons , 1966 .
[104] Gerhard J. Woeginger,et al. Banks winners in tournaments are difficult to recognize , 2003, Soc. Choice Welf..
[105] B. Debord. Caractérisation des matrices des préférences nettes et méthodes d'agrégation associées , 1987 .
[106] Merrill M. Flood,et al. Exact and heuristic algorithms for the weighted feedback arc set problem: A special case of the skew-symmetric quadratic assignment problem , 1990, Networks.
[107] Olivier Hudry,et al. Metric and Latticial Medians , 2009, Decision-making Process.
[108] Rafael Martí,et al. Context-Independent Scatter and Tabu Search for Permutation Problems , 2005, INFORMS J. Comput..
[109] A. Guénoche,et al. Median linear orders: Heuristics and a branch and bound algorithm , 1989 .
[110] A. Lobstein,et al. Algorithmic Complexity and communication problems , 1996 .
[111] J. Spencer. Nonconstructive methods in discrete mathematics , 1978 .
[112] Bernard Monjardet. Sur diverses formes de la \regle de Condorcet , 1990 .
[113] A. Rubinstein. Ranking the Participants in a Tournament , 1980 .
[114] J. P. N. Phillips. A PROCEDURE FOR DETERMINING SLATER'S i AND ALL NEAREST ADJOINING ORDERS , 1967 .
[115] Noga Alon. The maximum number of Hamiltonian paths in tournaments , 1990, Comb..
[116] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[117] Joel Spencer. Optimal ranking of tournaments , 1971, Networks.
[118] Irène Charon,et al. A branch-and-bound algorithm to solve the linear ordering problem for weighted tournaments , 2006, Discret. Appl. Math..
[119] Olivier Hudry. Nombre maximum d'ordres de Slater des tournois T vérifiant sigma(T) = 1 , 1997 .
[120] Röbbe Wünschiers,et al. An algorithmic approach to analyse genetic networks and biological energy production: an introduction and contribution where OR meets biology , 2009 .
[121] Yoram Singer,et al. Learning to Order Things , 1997, NIPS.
[122] Vincent Conitzer,et al. Computing Slater Rankings Using Similarities among Candidates , 2006, AAAI.
[123] Mutsunori Yagiura,et al. Efficient local search algorithms for the linear ordering problem , 2010, Int. Trans. Oper. Res..
[124] Irène Charon-Fournier,et al. Utilisation des scores dans des méthodes exactes déterminant les ordres médians de tournois , 1992 .
[125] Teh-Hsing Wei,et al. The algebraic foundations of ranking theory , 1952 .
[126] A. Guénoche,et al. Selecting varieties using a series of trials and a combinatorial ordering method , 1994 .
[127] Joseph Naor,et al. Sorting, Minimal Feedback Sets, and Hamilton Paths in Tournaments , 1990, SIAM J. Discret. Math..
[128] Bernard Monjardet,et al. Tournois et ordres n~dians pour une opinion , 1973 .
[129] Abraham Duarte,et al. Tabu search for the linear ordering problem with cumulative costs , 2011, Comput. Optim. Appl..
[130] Abilio Lucena,et al. Lagrangian heuristics for the linear ordering problem , 2004 .
[131] Eric Allender,et al. Complexity , 2007, Scholarpedia.
[132] Alain Guénoche,et al. How to Choose According to Partial Evaluations? , 1994, IPMU.
[133] Brian Alspach,et al. Cycles of Each Length in Regular Tournaments , 1967, Canadian Mathematical Bulletin.
[134] Joseph Naor,et al. Divide-and-conquer approximation algorithms via spreading metrics , 2000, JACM.
[135] Dr.J. P. N. Phillips. ON AN ALGORITHM OF SMITH AND PAYNE FOR DETERMINING SLATER'S i AND ALL NEAREST ADJOINING ORDERS , 1976 .
[136] P. Fishburn. Condorcet Social Choice Functions , 1977 .
[137] Olivier Hudry,et al. Encadrement de l'indice de Slater d'un tournoi à l'aide de ses scores , 1992 .
[138] M. R. Rao,et al. Majority Decisions and Transitivity: Some Special Cases , 1976 .
[139] T. Klastorin,et al. Optimal Weighted Ancestry Relationships , 1974 .
[140] Alantha Newman. Cuts and Orderings: On Semidefinite Relaxations for the Linear Ordering Problem , 2004, APPROX-RANDOM.
[141] Jayant Kalagnanam,et al. A Computational Study of the Kemeny Rule for Preference Aggregation , 2004, AAAI.
[142] Irène Charon,et al. Maximum Distance Between Slater Orders and Copeland Orders of Tournaments , 2011, Order.
[143] M. Breton,et al. The Bipartisan Set of a Tournament Game , 1993 .
[144] Zeev Nutov,et al. on the Integral Dicycle Packings and Covers and the Linear ordering Polytope , 1995, Discret. Appl. Math..
[145] Refael Hassin,et al. Approximations for the Maximum Acyclic Subgraph Problem , 1994, Inf. Process. Lett..
[146] Carlos Garc,et al. A Variable Neighborhood Search for Solving the Linear Ordering Problem , 2001 .
[147] Gerhard Reinelt,et al. Algorithmic Aspects of Using Small Instance Relaxations in Parallel Branch-and-Cut , 2001, Algorithmica.
[148] J. Mitchell,et al. Solving Linear Ordering Problems with a Combined Interior Point/Simplex Cutting Plane Algorithm , 2000 .
[149] Jean Fonlupt,et al. Compositions of Graphs and Polyhedra IV: Acyclic Spanning Subgraphs , 1994, SIAM J. Discret. Math..
[150] Xuemin Lin,et al. A Fast and Effective Heuristic for the Feedback Arc Set Problem , 1993, Inf. Process. Lett..
[151] J. Bermond. Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux , 1972 .
[152] M. Raghavachari,et al. Comparing the efficacy of ranking methods for multiple round-robin tournaments , 2000, Eur. J. Oper. Res..
[153] A. F. Smith,et al. AN ALGORITHM FOR DETERMINING SLATER'S i AND ALL NEAREST ADJOINING ORDERS , 1974 .
[154] H. Landau. On dominance relations and the structure of animal societies: I. Effect of inherent characteristics , 1951 .
[155] M. Kano,et al. Ranking the vertices of a paired comparison digraph with normal completeness theorems , 1983 .
[156] C. S. Colantoni,et al. Majority Rule Under Transitivity Constraints , 1973 .
[157] Carsten Thomassen,et al. Counterexamples to Adám's conjecture on arc reversals in directed graphs , 1987, J. Comb. Theory, Ser. B.
[158] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[159] Michel X. Goemans,et al. The Strongest Facets of the Acyclic Subgraph Polytope Are Unknown , 1996, IPCO.
[160] Michael Jünger,et al. Polyhedral combinatorics and the acyclic subdigraph problem , 1985 .
[161] Bonnie Berger,et al. Approximation alogorithms for the maximum acyclic subgraph problem , 1990, SODA '90.
[162] Joseph Naor,et al. Approximating Minimum Feedback Sets and Multicuts in Directed Graphs , 1998, Algorithmica.
[163] Lawrence Hubert,et al. Applications of combinatorial programming to data analysis: Seriation using asymmetric proximity measures , 1977 .
[164] Samuel Fiorini,et al. How to recycle your facets , 2006, Discret. Optim..
[165] Richard Edwin Stearns,et al. The Voting Problem , 1959 .
[166] J. Colomer,et al. Social choice in medieval Europe , 2008 .
[167] Jon Lee,et al. More facets from fences for linear ordering and acyclic subgraph polytopes , 1994, Discret. Appl. Math..
[168] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[169] Wenceslas Fernandez de la Vega,et al. On the maximum cardinality of a consistent set of arcs in a random tournament , 1983, J. Comb. Theory, Ser. B.
[170] Anton Kotzig,et al. On the maximal order of cyclicity of antisymmetric directed graphs , 1975, Discret. Math..
[171] Anders Yeo,et al. The Minimum Feedback Arc Set Problem is NP-Hard for Tournaments , 2006, Combinatorics, Probability and Computing.
[172] H. Young. Condorcet's Theory of Voting , 1988, American Political Science Review.
[173] Gerhard Reinelt,et al. A Cutting Plane Algorithm for the Linear Ordering Problem , 1984, Oper. Res..
[174] Giovanni Righini. A branch-and-bound algorithm for the linear ordering problem with cumulative costs , 2008, Eur. J. Oper. Res..
[175] Alain Guénoche. Un algorithme pour pallier l'effet Condorcet , 1977 .
[176] Peter Greistorfer,et al. Experimental pool design: input, output and combination strategies for scatter search , 2004 .
[177] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[178] K. B. Reid. Monochromatic reachability, complementary cycles, and single arc reversals in tournaments , 1984 .
[179] D. Black. The theory of committees and elections , 1959 .
[180] Bonnie Berger,et al. Tight Bounds for the Maximum Acyclic Subgraph Problem , 1997, J. Algorithms.
[181] John D. Dixon. The Maximum Order of the Group of a Tournament , 1967, Canadian Mathematical Bulletin.
[182] Garth Isaak,et al. Tournaments as Feedback Arc Sets , 1995, Electron. J. Comb..
[183] Jean-Marie Blin,et al. Note—A Note on Majority Rule under Transitivity Constraints , 1974 .
[184] Zeev Nutov,et al. On non-{0, 1/2, 1} extreme points of the generalized transitive tournament polytope , 1996 .
[185] John E. Mitchell,et al. Computational Experience with an Interior Point Cutting Plane Algorithm , 1999, SIAM J. Optim..
[186] Walter Oberhofer,et al. Zur Triangulation von Input-Output-Matrizen , 1968 .
[187] Fred W. Glover,et al. An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem , 2001, J. Glob. Optim..
[188] Irène Charon,et al. Note: A 16-vertex Tournament for Which Banks Set and Slater Set Are Disjoint , 1997, Discret. Appl. Math..
[189] J. Banks. Sophisticated voting outcomes and agenda control , 1984 .
[190] Christian Klamler. A comparison of the Dodgson method and the Copeland rule , 2003 .
[191] Vojtech Rödl,et al. Tournament Ranking with Expected Profit in Polynomial Time , 1988, SIAM J. Discret. Math..
[192] Gérard Cornuéjols,et al. The traveling salesman problem on a graph and some related integer polyhedra , 1985, Math. Program..
[193] Noga Alon,et al. Hardness of fully dense problems , 2007, Inf. Comput..
[194] Nicholas R. Miller. A New Solution Set for Tournaments and Majority Voting: Further Graph- Theoretical Approaches to the Theory of Voting , 1980 .
[195] Carsten Thomassen. Transversals of circuits in the lexicographic product of directed graphs , 1975 .
[196] J. Decani,et al. Maximum likelihood paired comparison ranking by linear programming , 1969 .
[197] Yoshiko Wakabayashi. The Complexity of Computing Medians of Relations , 1998 .
[198] Bhaskar Dutta. Covering sets and a new condorcet choice correspondence , 1988 .
[199] William F. Ames,et al. Numerical and applied mathematics , 1989 .
[200] Mathieu Koppen,et al. Random utility representation of binary choice probabilities: critical graphs yielding critical necessary conditions , 1995 .
[201] Julian F. Miller,et al. Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.
[202] K. Reid,et al. On Sets of Arcs Containing No Cycles in a Tournament* , 1969, Canadian Mathematical Bulletin.
[203] S. Goddard. Ranking in Tournaments and Group Decisionmaking , 1983 .
[204] Jean-Claude Bermond. The circuit - hypergraph of a tournament , 1975 .
[205] Thomas Stützle,et al. Search Space Analysis of the Linear Ordering Problem , 2003, EvoWorkshops.
[206] Jan Karel Lenstra,et al. Sequencing by enumerative methods , 1977 .
[207] Robert A. Meyers,et al. Encyclopedia of Complexity and Systems Science , 2009 .
[208] Bernard Debord. Axiomatisation de procédures d'agrégation de préférences , 1987 .
[209] Anne Germa,et al. Random generation of tournaments and asymmetric graphs with given out-degrees , 1996 .
[210] Gerhard Reinelt,et al. Branch-and-Bound , 2011 .
[211] H. Landau. On dominance relations and the structure of animal societies: III The condition for a score structure , 1953 .
[212] Thomas C. Ratliff. A comparison of Dodgson's method and Kemeny's rule , 2001, Soc. Choice Welf..
[213] Gerhard Reinelt,et al. The linear ordering problem: algorithms and applications , 1985 .
[214] H. P. Young,et al. On permutations and permutation polytopes , 1978 .
[215] J. Spencer. Ten lectures on the probabilistic method , 1987 .
[216] Richard K. Guy,et al. A coarseness conjecture of Erdös , 1967 .
[217] David P. Williamson,et al. Deterministic Algorithms for Rank Aggregation and Other Ranking and Clustering Problems , 2007, WAOA.
[218] Irène Charon,et al. Lamarckian genetic algorithmsapplied to the aggregation of preferences , 1998, Ann. Oper. Res..
[219] D. Coppersmith,et al. Ordering by weighted number of wins gives a good ranking for weighted tournaments , 2006, SODA 2006.
[220] James F. Korsh,et al. A branch search algorithm for maximum likelihood paired comparison ranking , 1974 .
[221] H. Lenstra,et al. The acyclic subgraph problem , 1973 .
[222] Rafael Martí,et al. Intensification and diversification with elite tabu search solutions for the linear ordering problem , 1999, Comput. Oper. Res..
[223] A. Lempel,et al. Minimum Feedback Arc and Vertex Sets of a Directed Graph , 1966 .
[224] Christoph Buchheim,et al. Exact Algorithms for the Quadratic Linear Ordering Problem , 2010, INFORMS J. Comput..
[225] Jean-François Laslier,et al. Tournament Solutions And Majority Voting , 1997 .
[226] Stefan Chanas,et al. A new heuristic algorithm solving the linear ordering problem , 1996, Comput. Optim. Appl..
[227] Finn E. Kydland. Hierarchical Decomposition in Linear Economic Models , 1975 .
[228] Eberhard Girlich,et al. New Facets of the Linear Ordering Polytope , 1999, SIAM J. Discret. Math..
[229] F. Glover,et al. Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.
[230] Christian Klamler,et al. The Dodgson ranking and its relation to Kemeny’s method and Slater’s rule , 2004, Soc. Choice Welf..
[231] P.-C.-F. Daunou,et al. Mémoire sur les élections au scrutin , 1803 .
[232] Gerhard Reinelt,et al. A note on small linear-ordering polytopes , 1993, Discret. Comput. Geom..
[233] M. Barbut. Note sur les ordres totaux à distance minimum d'une relation binaire donnée (cas fini - distance de la différence symétrique) , 1966 .
[234] Saket Saurabh,et al. Parameterized algorithms for feedback set problems and their duals in tournaments , 2006, Theor. Comput. Sci..
[235] Bruno Leclerc,et al. Ensembles ordonnés finis : concepts, résultats, usages , 2007 .
[236] Olivier Hudry. A note on “Banks winners in tournaments are difficult to recognize” by G. J. Woeginger , 2004, Soc. Choice Welf..
[237] Christian Klamler. Kemeny's rule and Slater''s rule: A binary comparison , 2003 .
[238] M. Trick,et al. Voting schemes for which it can be difficult to tell who won the election , 1989 .
[239] D. R. Fulkerson. UPSETS IN ROUND ROBIN TOURNAMENTS , 1965 .
[240] Xuemin Lin,et al. A heuristic for the feedback arc set problem , 1995, Australas. J Comb..
[241] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[242] Jean-Claude Bermond,et al. Une Heuristique pour le Calcul de l'Indice de Transitivité d'un Tournoi , 1976, RAIRO Theor. Informatics Appl..
[243] Robert Sugden,et al. Condorcet: Foundations of Social Choice and Political Theory , 1994 .
[244] Andrew B. Whinston,et al. Discriminant Functions and Majority Voting , 1975 .
[245] John Doyle,et al. Ranking players in multiple tournaments , 1996, Comput. Oper. Res..
[246] Matteo Fischetti,et al. The Linear Ordering Problem with cumulative costs , 2008, Eur. J. Oper. Res..
[247] J. P. N. Phillips. A FURTHER PROCEDURE FOR DETERMINING SLATER'S i AND ALL NEAREST ADJOINING ORDERS , 1969 .
[248] Samuel Fiorini,et al. The Biorder Polytope , 2004, Order.
[249] Svatopluk Poljak,et al. A polynomial time heuristic for certain subgraph optimization problems with guaranteed worst case bound , 1986, Discret. Math..
[250] J. Hardouin Duparc. Quelques résultats sur « l'indice de transitivité » de certains tournois , 1975 .
[251] Irène Charon,et al. A survey on the linear ordering problem for weighted or unweighted tournaments , 2007, 4OR.
[252] Olivier Hudry,et al. On the complexity of Slater's problems , 2010, Eur. J. Oper. Res..