Genomics Portals: integrative web-platform for mining genomics data

BackgroundA large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems.ResultsGenomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis.ConclusionThe integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

[1]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[2]  I Kimber,et al.  Anti-proliferative effect of estrogen in breast cancer cells that re-express ERalpha is mediated by aberrant regulation of cell cycle genes. , 2005, Journal of molecular endocrinology.

[3]  Gordon K. Smyth,et al.  limma: Linear Models for Microarray Data , 2005 .

[4]  M. Bissell,et al.  Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer. , 2006, Cancer research.

[5]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[6]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[7]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[8]  Mark Craven,et al.  EDGE: A Centralized Resource for the Comparison, Analysis, and Distribution of Toxicogenomic Information , 2005, Molecular Pharmacology.

[9]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[10]  David Liu,et al.  DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis , 2007, BMC Bioinformatics.

[11]  J. Davis Bioinformatics and Computational Biology Solutions Using R and Bioconductor , 2007 .

[12]  Y. Kalma,et al.  Expression analysis using DNA microarrays demonstrates that E2F-1 up-regulates expression of DNA replication genes including replication protein A2 , 2001, Oncogene.

[13]  Sven Bergmann,et al.  A modular approach for integrative analysis of large-scale gene-expression and drug-response data , 2008, Nature Biotechnology.

[14]  Ka Yee Yeung,et al.  Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset , 2006, Bioinform..

[15]  Michael I. Jordan,et al.  A critical assessment of Mus musculus gene function prediction using integrated genomic evidence , 2008, Genome Biology.

[16]  Michael Q. Zhang,et al.  Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. , 2007, Genome research.

[17]  Judith A. Blake,et al.  The Mouse Genome Database genotypes::phenotypes , 2008, Nucleic Acids Res..

[18]  Rong Chen,et al.  GeneChaser: Identifying all biological and clinical conditions in which genes of interest are differentially expressed , 2008, BMC Bioinformatics.

[19]  E. Birney,et al.  An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). , 2008, Genome research.

[20]  M. Medvedovic,et al.  Influence of fatty acid diets on gene expression in rat mammary epithelial cells. , 2009, Physiological genomics.

[21]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[22]  T. Mikkelsen,et al.  Dissecting direct reprogramming through integrative genomic analysis , 2008, Nature.

[23]  J. Astola,et al.  Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues , 2008, Genome Biology.

[24]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Yuanfang Guan,et al.  A Genomewide Functional Network for the Laboratory Mouse , 2008, PLoS Comput. Biol..

[26]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[27]  Ting Wang,et al.  The UCSC Genome Browser Database: update 2009 , 2008, Nucleic Acids Res..

[28]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..

[29]  Mario Medvedovic,et al.  Bayesian infinite mixture model based clustering of gene expression profiles , 2002, Bioinform..

[30]  Victor X Jin,et al.  A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. , 2007, Genome research.

[31]  D. Koller,et al.  A module map showing conditional activity of expression modules in cancer , 2004, Nature Genetics.

[32]  Carolina Perez-Iratxeta,et al.  StemBase: a resource for the analysis of stem cell gene expression data. , 2007, Methods in molecular biology.

[33]  Weidong Tian,et al.  Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function , 2008, Genome Biology.

[34]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[35]  Jeremiah J. Faith,et al.  Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata , 2007, Nucleic Acids Res..

[36]  Samuel Granjeaud,et al.  TranscriptomeBrowser: A Powerful and Flexible Toolbox to Explore Productively the Transcriptional Landscape of the Gene Expression Omnibus Database , 2008, PloS one.

[37]  Weidong Tian,et al.  An en masse phenotype and function prediction system for Mus musculus , 2008, Genome Biology.

[38]  A. Weiner,et al.  Software L 2 L : a simple tool for discovering the hidden significance in microarray expression data , 2005 .

[39]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[40]  Zhen Hu,et al.  BMC Bioinformatics BioMed Central Methodology article CLEAN: CLustering Enrichment ANalysis , 2009 .

[41]  Mario Medvedovic,et al.  LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data , 2009, Bioinform..

[42]  Andrew M. Jenkinson,et al.  Ensembl 2009 , 2008, Nucleic Acids Res..

[43]  P. Hall,et al.  An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Zhiyuan Hu,et al.  Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors , 2007, Genome Biology.

[45]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Rubin,et al.  Integrative biology of prostate cancer progression. , 2006, Annual review of pathology.

[47]  Dennis B. Troup,et al.  NCBI GEO: mining millions of expression profiles—database and tools , 2004, Nucleic Acids Res..

[48]  Mario Medvedovic,et al.  Genomewide Analysis of Aryl Hydrocarbon Receptor Binding Targets Reveals an Extensive Array of Gene Clusters that Control Morphogenetic and Developmental Programs , 2009, Environmental health perspectives.

[49]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .