High angular resolution Sunyaev-Zel’dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis

NIKA, the prototype of the NIKA2 camera, is an instrument operating at the IRAM 30m telescope that can observe the sky simultaneously at 150 and 260GHz. One of the main goals of NIKA is to measure the pressure distribution in galaxy clusters at high angular resolution using the Sunyaev-Zel'dovich (SZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at high redshifts. However, an important fraction of clusters host submm and/or radio point sources that can significantly affect the reconstructed signal. Here we report <20arcsec angular resolution observations at 150 and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point sources. We examine the morphological distribution of the SZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the SED of the submm point source contaminants. We then perform a joint reconstruction of the ICM electronic pressure and density by combining NIKA, Planck, XMM-Newton and Chandra data, focussing on the impact of the radio and submm sources on the reconstructed pressure profile. We find that the large-scale pressure distribution is unaffected by the point sources due to the resolved nature of the NIKA observations. The reconstructed pressure in the inner region is slightly higher when the contribution of point sources are removed. We show that it is not possible to set strong constraints on the central pressure distribution without removing accurately these contaminants. The comparison with Xray only data shows good agreement for the pressure, temperature and entropy profiles, all indicating that MACSJ1424 is a dynamically relaxed cool core system. The present observations illustrate the possibility of measuring these quantities with a relatively small integration time, even at high redshift and without Xray spectroscopy.

[1]  S. Randall,et al.  RESOLVING THE MERGING PLANCK CLUSTER PLCK G147.3-16.6 WITH GISMO , 2015, 1501.05051.

[2]  L. David,et al.  XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters - Systematic temperature differences and cosmological impact , 2014, 1404.7130.

[3]  M. Meneghetti,et al.  HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.

[4]  M. Nonino,et al.  MEASUREMENTS OF THE SUNYAEV–ZEL’DOVICH EFFECT IN MACS J0647.7+7015 AND MACS J1206.2–0847 AT HIGH ANGULAR RESOLUTION WITH MUSTANG , 2014, 1411.0317.

[5]  P. Ade,et al.  Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA ? , 2014, 1410.2808.

[6]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[7]  Daniel P. Marrone,et al.  LoCuSS: Hydrostatic mass measurements of the high-LX cluster sample - cross-calibration of Chandra and XMM-Newton , 2014, 1406.6831.

[8]  T. Kitayama Cosmological and Astrophysical Implications of the Sunyaev-Zel'dovich Effect , 2014, 1404.0870.

[9]  P. Ade,et al.  Performance and calibration of the NIKA camera at the IRAM 30 m telescope , 2014, 1402.0260.

[10]  C. Benoist,et al.  Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4–0.9] redshift range , 2013, 1311.6922.

[11]  N. Ponthieu,et al.  First observation of the thermal Sunyaev-Zel’dovich effect with kinetic inductance detectors , 2013, 1310.6237.

[12]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[13]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy &amp; Astrophysics.

[14]  J. Bock,et al.  A MEASUREMENT OF THE KINETIC SUNYAEV–ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745 , 2013, 1312.3680.

[15]  N. Ponthieu,et al.  Latest NIKA Results and the NIKA-2 Project , 2013, 1310.1230.

[16]  J. Kneib,et al.  HerMES: A DEFICIT IN THE SURFACE BRIGHTNESS OF THE COSMIC INFRARED BACKGROUND DUE TO GALAXY CLUSTER GRAVITATIONAL LENSING , 2013, 1303.6725.

[17]  N. Ponthieu,et al.  Improved mm-wave photometry for kinetic inductance detectors , 2013 .

[18]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[19]  Elena Pierpaoli,et al.  SUNYAEV–ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE , 2012, 1211.1632.

[20]  H. Hoekstra,et al.  JOINT ANALYSIS OF CLUSTER OBSERVATIONS. II. CHANDRA/XMM-NEWTON X-RAY AND WEAK LENSING SCALING RELATIONS FOR A SAMPLE OF 50 RICH CLUSTERS OF GALAXIES , 2012, 1210.3689.

[21]  L. Moustakas,et al.  THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE SUNYAEV–ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH BOLOCAM , 2012, 1209.5129.

[22]  Douglas Scott,et al.  A UNIFIED EMPIRICAL MODEL FOR INFRARED GALAXY COUNTS BASED ON THE OBSERVED PHYSICAL EVOLUTION OF DISTANT GALAXIES , 2012, 1208.6512.

[23]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[24]  M. Calvo,et al.  NIKEL: Electronics and data acquisition for kilopixels kinetic inductance camera , 2012, 1204.1415.

[25]  M. Lueker,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL’DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1203.5775.

[26]  P. P. van der Werf,et al.  THE RELATION BETWEEN COOL CLUSTER CORES AND HERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES , 2012, 1201.1294.

[27]  Amber D. Miller,et al.  Comparison of pressure profiles of massive relaxed galaxy clusters using the Sunyaev–Zel'dovich and x-ray data , 2011, 1112.1599.

[28]  G. Lagache,et al.  POKER: Estimating the power spectrum of diffuse emission with complex masks and at high angular resolution , 2011, 1111.0766.

[29]  A. C. Fabian,et al.  Extreme AGN feedback in the MAssive Cluster Survey: a detailed study of X-ray cavities at z>0.3 , 2011, 1110.0489.

[30]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[31]  L. Toffolatti,et al.  High-frequency predictions for number counts and spectral properties of extragalactic radio sources. New evidence of a break at mm wavelengths in spectra of bright blazar sources , 2011, 1103.5707.

[32]  J. J. A. Baselmans,et al.  A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE , 2011, 1102.0870.

[33]  S. R. Dicker,et al.  MUSTANG HIGH ANGULAR RESOLUTION SUNYAEV–ZEL'DOVICH EFFECT IMAGING OF SUBSTRUCTURE IN FOUR GALAXY CLUSTERS , 2010, 1010.5494.

[34]  S. Borgani,et al.  Cosmological Simulations of Galaxy Clusters , 2009, 0906.4370.

[35]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[36]  J. Kneib,et al.  The Herschel Lensing Survey (HLS): Overview , 2010, 1005.3820.

[37]  J. J. A. Baselmans,et al.  NIKA: A millimeter-wave kinetic inductance camera , 2010, 1004.2209.

[38]  N. Benı́tez,et al.  Strong-lensing analysis of a complete sample of 12 MACS clusters at z > 0.5: mass models and Einstein radii , 2010, 1002.0521.

[39]  H. Böhringer,et al.  X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories , 2010 .

[40]  P. A. R. Ade,et al.  ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4315.

[41]  K. Pedersen,et al.  UNVEILING THE THREE-DIMENSIONAL STRUCTURE OF GALAXY CLUSTERS: RESOLVING THE DISCREPANCY BETWEEN X-RAY AND LENSING MASSES , 2009, 0912.2648.

[42]  A. M. Swinbank,et al.  MACS J1423.8+2404: gravitational lensing by a massive, relaxed cluster of galaxies at z= 0.54 , 2009, 0911.4125.

[43]  Adrian T. Lee,et al.  SUNYAEV–ZEL’DOVICH CLUSTER PROFILES MEASURED WITH THE SOUTH POLE TELESCOPE , 2009, 0911.2444.

[44]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[45]  G. W. Pratt,et al.  Gas entropy in a representative sample of nearby X-ray galaxy clusters (REXCESS): relationship to gas mass fraction , 2009, 0909.3776.

[46]  R. Stompor,et al.  MADmap: A MASSIVELY PARALLEL MAXIMUM LIKELIHOOD COSMIC MICROWAVE BACKGROUND MAP-MAKER , 2009, 0906.1775.

[47]  Megan Donahue,et al.  INTRACLUSTER MEDIUM ENTROPY PROFILES FOR A CHANDRA ARCHIVAL SAMPLE OF GALAXY CLUSTERS , 2009, 0902.1802.

[48]  G. W. Pratt,et al.  Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS) , 2008, 0809.3784.

[49]  H. Ebeling,et al.  Probing the large-scale structure around the most distant galaxy clusters from the massive cluster survey , 2008, 0806.4019.

[50]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[51]  L. Guzzo,et al.  The representative XMM-Newton cluster structure survey (REXCESS) of an X-ray luminosity selected galaxy cluster sample , 2007, astro-ph/0703553.

[52]  KIPACStanford,et al.  The dark matter haloes of massive, relaxed galaxy clusters observed with Chandra , 2006, astro-ph/0610038.

[53]  S. Borgani,et al.  Temperature profiles of a representative sample of nearby X-ray galaxy clusters , 2006, astro-ph/0609480.

[54]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[55]  K. Dawson,et al.  Radio Sources toward Galaxy Clusters at 30 GHz , 2006, astro-ph/0608274.

[56]  S. Oliver,et al.  Bayesian Methods of Astronomical Source Extraction , 2005, astro-ph/0512597.

[57]  M. Arnaud,et al.  An improved deprojection and PSF-deconvolution technique for galaxy-cluster X-ray surface-brightness profiles , 2006, astro-ph/0608700.

[58]  D. Nagai,et al.  The Impact of Galaxy Formation on the Sunyaev-Zel'dovich Effect of Galaxy Clusters , 2005, astro-ph/0512208.

[59]  Greg L. Bryan,et al.  The baseline intracluster entropy profile from gravitational structure formation , 2005, astro-ph/0511252.

[60]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[61]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[62]  A. Vikhlinin Predicting a Single-Temperature Fit to Multicomponent Thermal Plasma Spectra , 2005, astro-ph/0504098.

[63]  Jack O. Burns,et al.  Accepted to ApJ Letters Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE INTEGRATED SUNYAEV-ZELDOVICH EFFECT AS THE SUPERIOR METHOD FOR MEASURING THE MASS OF CLUSTERS OF GALAXIES , 2005 .

[64]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[65]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[66]  L. Moscardini,et al.  Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations , 2004, astro-ph/0404425.

[67]  Amber D. Miller,et al.  Sunyaev-Zeldovich Effect Imaging of MACS Galaxy Clusters at z > 0.5 , 2003 .

[68]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[69]  S. Borgani,et al.  First Results from the X-Ray and Optical Survey of the Chandra Deep Field South , 2000, astro-ph/0007240.

[70]  E. Komatsu,et al.  Substructures Revealed by the Sunyaev–Zel’dovich Effect at 150 GHz in a High-Resolution Map of RX J1347$-$1145 , 2000, astro-ph/0006293.

[71]  USA,et al.  Measuring cluster temperature profiles with XMM/EPIC , 2000, astro-ph/0011198.

[72]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[73]  A. Liddle,et al.  Hydrodynamical simulations of the Sunyaev-Zel'dovich effect , 1999, astro-ph/9907224.

[74]  J. Mohr,et al.  The Sunyaev-Zel'dovich Effect , 2000 .

[75]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[76]  Etienne Pointecouteau,et al.  A Sunyaev-Zeldovich Map of the Massive Core in the Luminous X-Ray Cluster RX J1347–1145 , 1999 .

[77]  S. Nozawa,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. IV. Analytic Fitting Formula for the Numerical Results , 1999, astro-ph/9912008.

[78]  Dan McCammon,et al.  First Maps of the Soft X-Ray Diffuse Background from the ROSAT XRT/PSPC All-Sky Survey , 1995 .

[79]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[80]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[81]  Ya. B. Zel'Dovich,et al.  Microwave background radiation as a probe of the contemporary structure and history of the universe , 1980 .

[82]  I. Pauliny-Toth,et al.  21 cm flux density measurements of sources from the NRAO-MPIfR 6 cm surveys , 1979 .