Design of a nonlinear adaptive natural oscillator: Towards natural dynamics exploitation in cyclic tasks

In this paper, we present the dynamical equations of a nonlinear adaptive natural oscillator (NANO) in order to exploit the natural dynamics in robotic systems. The presented oscillator tries to minimize an energy-based cost function by adapting the shape and frequency of the reference trajectory. Stability, convergence, and optimality of this oscillator are guaranteed analytically. Moreover, the performance of this oscillator is investigated by applying it to three different types of robotic models; i.e., the pendulum, the adaptive-toy, and the hopper-leg.

[1]  Majid Nili Ahmadabadi,et al.  Energy Efficient Locomotion with Adaptive Natural Oscillator , 2014 .

[2]  Izabela Ewa Nielsen,et al.  Proceedings of the 17th World Congress , 2008 .

[3]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[4]  Fumitoshi Matsuno,et al.  Adaptive neural oscillators with synaptic plasticity for locomotion control of a snake-like robot with screw-drive mechanism , 2013, 2013 IEEE International Conference on Robotics and Automation.

[5]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[6]  Auke Jan Ijspeert,et al.  Automatic Resonance Tuning and Feedforward Learning of Biped Walking using Adaptive Oscillators , 2011 .

[7]  Jun Nakanishi,et al.  Learning Movement Primitives , 2005, ISRR.

[8]  Yamilet Quintana,et al.  A survey on the Weierstrass approximation theorem , 2006, math/0611038.

[9]  Majid Nili Ahmadabadi,et al.  Natural dynamics modification for energy efficiency: A data-driven parallel compliance design method , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[10]  A. Ijspeert,et al.  Adaptive Frequency Oscillators and Applications , 2009 .

[11]  Ludovic Righetti,et al.  Programmable central pattern generators: an application to biped locomotion control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[12]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[13]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[14]  Fumiya Iida,et al.  Finding Resonance: Adaptive Frequency Oscillators for Dynamic Legged Locomotion , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Aude Billard,et al.  A Simple, Adaptive Locomotion Toy-System , 2004 .

[16]  Albert Wang,et al.  Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[17]  P. Olver Nonlinear Systems , 2013 .

[18]  M. Chial,et al.  in simple , 2003 .

[19]  Auke J. Ijspeert,et al.  Biorobotics: Using robots to emulate and investigate agile locomotion , 2014, Science.

[20]  Jun Nakanishi,et al.  A unifying framework for robot control with redundant DOFs , 2007, Auton. Robots.

[21]  Masafumi Okada,et al.  Optimal design of nonlinear springs in robot mechanism: simultaneous design of trajectory and spring force profiles , 2013, Adv. Robotics.

[22]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[23]  A. Ijspeert,et al.  Dynamic hebbian learning in adaptive frequency oscillators , 2006 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Ahmad Ghanbari,et al.  Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode , 2013 .

[26]  C. T. Farley,et al.  Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. , 1998, Journal of applied physiology.