Soft Robotics: Review of Fluid‐Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human‐Robot Interaction  

The emerging field of soft robotics makes use of many classes of materials including metals, low glass transition temperature (Tg) plastics, and high Tg elastomers. Dependent on the specific design, all of these materials may result in extrinsically soft robots. Organic elastomers, however, have elastic moduli ranging from tens of megapascals down to kilopascals; robots composed of such materials are intrinsically soft − they are always compliant independent of their shape. This class of soft machines has been used to reduce control complexity and manufacturing cost of robots, while enabling sophisticated and novel functionalities often in direct contact with humans. This review focuses on a particular type of intrinsically soft, elastomeric robot − those powered via fluidic pressurization.

[1]  Yoji Umetani,et al.  The Development of Soft Gripper for the Versatile Robot Hand , 1978 .

[2]  D. Khastgir,et al.  Pressure-sensitive electrically conductive nitrile rubber composites filled with particulate carbon black and short carbon fibre , 1990 .

[3]  G. Whitesides,et al.  Monolayers on disordered substrates: self-assembly of alkyltrichlorosilanes on surface-modified polyethylene and poly(dimethylsiloxane) , 1993 .

[4]  Rhoda Priest Erhardt Developmental hand dysfunction : theory assessment treatment , 1994 .

[5]  M. Chaudhury,et al.  Self-assembled monolayers on polymer surfaces , 1995 .

[6]  G. Honderd,et al.  A hydraulic forceps with force-feedback for use in minimally invasive surgery , 1996 .

[7]  Koichi Suzumori,et al.  Elastic materials producing compliant robots , 1996, Robotics Auton. Syst..

[8]  Koichi Suzumori,et al.  Integrated flexible microactuator systems , 1996, Robotica.

[9]  Michael F. Ashby,et al.  The selection of mechanical actuators based on performance indices , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[11]  Zhang,et al.  Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer , 1998, Science.

[12]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[13]  A Ruzzu,et al.  Positioning system for catheter tips based on an active microvalve system , 1998 .

[14]  J. Liepert,et al.  Treatment-induced cortical reorganization after stroke in humans. , 2000, Stroke.

[15]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[16]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[17]  S. Konishi,et al.  Thin flexible end-effector using pneumatic balloon actuator , 2000 .

[18]  Toshiro Noritsugu,et al.  Development of Pneumatic Rotary Soft Actuator Made of Silicone Rubber , 2001, J. Robotics Mechatronics.

[19]  A. Hiltner,et al.  Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer , 2001 .

[20]  J. Genzer,et al.  Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. , 2002, Journal of colloid and interface science.

[21]  Toru Takehisa,et al.  Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De‐swelling Properties , 2002 .

[22]  Hermano Igo Krebs,et al.  Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy , 2003, Auton. Robots.

[23]  Colette Lacabanne,et al.  DC and AC conductivity of carbon nanotubes-polyepoxy composites , 2003 .

[24]  Andrea Manuello Bertetto,et al.  A Novel Fluidic Bellows Manipulator , 2004, J. Robotics Mechatronics.

[25]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Tamar Flash,et al.  Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. , 2005, Journal of neurophysiology.

[27]  Daisuke Sasaki,et al.  Development of Pneumatic Wearable Power Assist Device for Human Arm "ASSIST" , 2005 .

[28]  Dominiek Reynaerts,et al.  Production and characterization of a hydraulic microactuator , 2005 .

[29]  Chang-Jin Kim,et al.  Pneumatically Driven Microcage for Microbe Manipulation in a Biological Liquid Environment , 2006, Journal of Microelectromechanical Systems.

[30]  Bram Vanderborght,et al.  Exploiting Natural Dynamics to Reduce Energy Consumption by Controlling the Compliance of Soft Actuators , 2006, Int. J. Robotics Res..

[31]  Neil Hopkinson,et al.  Effects of processing on microstructure and properties of SLS Nylon 12 , 2006 .

[32]  Chandana Paul,et al.  Morphological computation: A basis for the analysis of morphology and control requirements , 2006, Robotics Auton. Syst..

[33]  Dong-Woo Cho,et al.  Development of a micro-bellows actuator using micro-stereolithography technology , 2006 .

[34]  Yanlei Yu,et al.  Photomechanics of liquid-crystalline elastomers and other polymers. , 2007, Angewandte Chemie.

[35]  R. Hanlon,et al.  Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores , 2007, Cell and Tissue Research.

[36]  Satoshi Konishi,et al.  Fabrication and drive test of pneumatic PDMS micro pump , 2007 .

[37]  Roger Hanlon,et al.  Cephalopod dynamic camouflage , 2007, Current Biology.

[38]  Edoardo Mazza,et al.  Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators , 2007 .

[39]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[40]  G. Whitesides,et al.  Eutectic Gallium‐Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature , 2008 .

[41]  T. Milner,et al.  HandCARE: A Cable-Actuated Rehabilitation System to Train Hand Function After Stroke , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[42]  A. Tewari,et al.  LAPARO‐ENDOSCOPIC SINGLE‐SITE SURGERY IN UROLOGY: IS ROBOTICS THE MISSING LINK? , 2009, BJU international.

[43]  Rolf Pfeifer,et al.  Morphological Computation - Connecting Brain, Body, and Environment , 2006, Australian Conference on Artificial Intelligence.

[44]  Gwo-Bin Lee,et al.  A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure , 2009 .

[45]  Alain Delchambre,et al.  Towards flexible medical instruments: Review of flexible fluidic actuators , 2009 .

[46]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[47]  Wendelin Jan Stark,et al.  Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. , 2009, Small.

[48]  Pierre E. Dupont,et al.  Design and Control of Concentric-Tube Robots , 2010, IEEE Transactions on Robotics.

[49]  J. Lewis,et al.  Direct-write assembly of biomimetic microvascular networks for efficient fluid transport , 2010 .

[50]  Dominiek Reynaerts,et al.  Pneumatic and hydraulic microactuators: a review , 2010 .

[51]  Nam-Trung Nguyen,et al.  Micro-optofluidic Lenses: A review. , 2010, Biomicrofluidics.

[52]  D. De Rossi,et al.  Stretching Dielectric Elastomer Performance , 2010, Science.

[53]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[54]  Shuichi Takayama,et al.  Polymeric Aqueous Biphasic Systems for Non‐Contact Cell Printing on Cells: Engineering Heterocellular Embryonic Stem Cell Niches , 2010, Advanced materials.

[55]  J Dankelman,et al.  Scopes Too Flexible...and Too Stiff , 2010, IEEE Pulse.

[56]  Nikolaus Correll,et al.  Soft Autonomous Materials - Using Active Elasticity and Embedded Distributed Computation , 2010, ISER.

[57]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[58]  Herbert Shea,et al.  Multilayer dielectric elastomer actuators with ion implanted electrodes , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[59]  Daisuke Sasaki,et al.  Development of Soft Power-Assist Glove and Control Based on Human Intent , 2011, J. Robotics Mechatronics.

[60]  R. Wood,et al.  A non-differential elastomer curvature sensor for softer-than-skin electronics , 2011 .

[61]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[62]  Alena M. Grabowski,et al.  Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation , 2012, Proceedings of the Royal Society B: Biological Sciences.

[63]  Christopher M Spadaccini,et al.  Photocurable Liquid Core–Fugitive Shell Printing of Optical Waveguides , 2011, Advanced materials.

[64]  Dominiek Reynaerts,et al.  Fabrication and control of miniature McKibben actuators , 2011 .

[65]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[66]  B Mazzolai,et al.  An octopus-bioinspired solution to movement and manipulation for soft robots , 2011, Bioinspiration & biomimetics.

[67]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[68]  J. Dai,et al.  FLEXIBLE ROBOTICS , 2011, BJU international.

[69]  Francesco Giovacchini,et al.  Mechatronic Design and Characterization of the Index Finger Module of a Hand Exoskeleton for Post-Stroke Rehabilitation , 2012, IEEE/ASME Transactions on Mechatronics.

[70]  John A. Rogers,et al.  Highly Sensitive Skin‐Mountable Strain Gauges Based Entirely on Elastomers , 2012 .

[71]  D. Reynaerts,et al.  Integrated high pressure microhydraulic actuation and control for surgical instruments , 2012, Biomedical microdevices.

[72]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[73]  Robert J. Wood,et al.  Bio-Inspired Design of Soft Robotic Assistive Devices: The Interface of Physics, Biology, and Behavior , 2012 .

[74]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[75]  Hsu-Chiang Kuan,et al.  A novel approach to electrically and thermally conductive elastomers using graphene , 2013 .

[76]  Min-Hsien Wu,et al.  Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring , 2013 .

[77]  G. Whitesides,et al.  Soft Machines That are Resistant to Puncture and That Self Seal , 2013, Advanced materials.

[78]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[79]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[80]  Guang-Zhong Yang,et al.  Emerging Robotic Platforms for Minimally Invasive Surgery , 2013, IEEE Reviews in Biomedical Engineering.

[81]  Lucia Beccai,et al.  Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing , 2013, Sensors.

[82]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[83]  Yonggang Huang,et al.  Ultrathin conformal devices for precise and continuous thermal characterization of human skin. , 2013, Nature materials.

[84]  Manuel G. Catalano,et al.  A synergy-driven approach to a myoelectric hand , 2013, 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR).

[85]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[86]  F. Al-Bender,et al.  Modeling and bonding-free fabrication of flexible fluidic microactuators with a bending motion , 2013 .

[87]  Stephanie J. Benight,et al.  Stretchable and self-healing polymers and devices for electronic skin , 2013 .

[88]  조규진,et al.  링키지와 결합된 공압 인공근육을 이용한 손 외골격 제작 , 2013 .

[89]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[90]  Shuichi Takayama,et al.  Control of soft machines using actuators operated by a Braille display. , 2014, Lab on a chip.

[91]  CianchettiMatteo,et al.  Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach , 2014 .

[92]  Wendelin J. Stark,et al.  3D printed lost-wax casted soft silicone monoblocks enable heart-inspired pumping by internal combustion , 2014 .

[93]  S. Turner,et al.  Comparative Biomechanics: Life's Physical World (2nd ed.). , 2014 .

[94]  Stephen A. Morin,et al.  Using “Click‐e‐Bricks” to Make 3D Elastomeric Structures , 2014, Advanced materials.

[95]  K. Bertoldi,et al.  A Bioinspired Soft Actuated Material , 2014, Advanced materials.

[96]  Chen-Hua Yeow,et al.  Customizable Soft Pneumatic Chamber–Gripper Devices for Delicate Surgical Manipulation , 2014 .

[97]  Conor J. Walsh,et al.  Stronger, Smarter, Softer: Next-Generation Wearable Robots , 2014, IEEE Robotics & Automation Magazine.

[98]  S. Evoy,et al.  A review of piezoelectric polymers as functional materials for electromechanical transducers , 2014 .

[99]  James P. Wissman,et al.  Rapid Prototyping for Soft‐Matter Electronics , 2014 .

[100]  Kevin C. Galloway,et al.  Biologically Inspired Soft Robot for Thumb Rehabilitation , 2014 .

[101]  V. Falk,et al.  Concept and first experimental results of a new ferromagnetic assist device for extra-aortic counterpulsation. , 2014, Interactive cardiovascular and thoracic surgery.

[102]  Kenjiro Takemura,et al.  Micro inchworm robot using electro-conjugate fluid , 2014 .

[103]  George M. Whitesides,et al.  A Hybrid Combining Hard and Soft Robots , 2014 .

[104]  Radhika Nagpal,et al.  Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation , 2014, Bioinspiration & biomimetics.

[105]  Carter S. Haines,et al.  Artificial Muscles from Fishing Line and Sewing Thread , 2014, Science.

[106]  Robert J. Wood,et al.  A Soft Combustion-Driven Pump for Soft Robots , 2014 .

[107]  Robert J. Wood,et al.  Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics , 2014 .

[108]  Robert J. Wood,et al.  Monolithic Fabrication of Millimeter-Scale Surgical Devices With Integrated Sensing , 2014 .

[109]  Stephen A. Morin,et al.  Elastomeric Tiles for the Fabrication of Inflatable Structures , 2014 .

[110]  Wendelin J. Stark,et al.  Design, Performance and Reinforcement of Bearing-Free Soft Silicone Combustion-Driven Pumps , 2014 .

[111]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[112]  Ephrahim Garcia,et al.  Reconsidering the McKibben muscle: Energetics, operating fluid, and bladder material , 2014 .

[113]  Rebecca K. Kramer,et al.  Soft Tactile Sensor Arrays for Force Feedback in Micromanipulation , 2014, IEEE Sensors Journal.

[114]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[115]  Yonggang Huang,et al.  Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring , 2014, Nature Communications.

[116]  Fuchen Chen,et al.  Slithering towards autonomy: a self-contained soft robotic snake platform with integrated curvature sensing , 2015, Bioinspiration & biomimetics.

[117]  A Menciassi,et al.  A bioinspired soft manipulator for minimally invasive surgery , 2015, Bioinspiration & biomimetics.

[118]  Thomas J. Wallin,et al.  3D printing antagonistic systems of artificial muscle using projection stereolithography , 2015, Bioinspiration & biomimetics.

[119]  Conor J. Walsh,et al.  Soft Wearable Orthotic Device for Assisting Kicking Motion in Developmentally Delayed Infants , 2015 .

[120]  R. Shepherd,et al.  Scalable manufacturing of high force wearable soft actuators , 2015 .

[121]  Inho Cho,et al.  Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes , 2015, Scientific Reports.

[122]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[123]  Robert J. Wood,et al.  Soft robotic glove for combined assistance and at-home rehabilitation , 2015, Robotics Auton. Syst..

[124]  Stephen A. Morin,et al.  Stretchable Chemical Patterns for the Assembly and Manipulation of Arrays of Microdroplets with Lensing and Micromixing Functionality , 2015 .

[125]  Cagdas D. Onal,et al.  A precise embedded curvature sensor module for soft-bodied robots , 2015 .

[126]  Huichan Zhao,et al.  Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense , 2015 .

[127]  Sanlin S. Robinson,et al.  Poroelastic Foams for Simple Fabrication of Complex Soft Robots , 2015, Advanced materials.

[128]  Conor J. Walsh,et al.  A Soft Robotic Orthosis for Wrist Rehabilitation , 2015 .

[129]  Robert J. Wood,et al.  Modeling of Soft Fiber-Reinforced Bending Actuators , 2015, IEEE Transactions on Robotics.

[130]  Arianna Menciassi,et al.  Modular soft mechatronic manipulator for minimally invasive surgery (MIS): overall architecture and development of a fully integrated soft module , 2015 .

[131]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[132]  Nikolaus Correll,et al.  Materials that couple sensing, actuation, computation, and communication , 2015, Science.

[133]  S. Bertog,et al.  Incomplete left atrial appendage occlusion and thrombus formation after Watchman implantation treated with anticoagulation followed by further transcatheter closure with a second‐generation Amplatzer Cardiac Plug (Amulet device) , 2015, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[134]  LoepfeMichael,et al.  An Untethered, Jumping Roly-Poly Soft Robot Driven by Combustion , 2015 .

[135]  Oliver Brock,et al.  Soft Robotics: Transferring Theory to Application , 2015 .

[136]  Wendelin J. Stark,et al.  Contrast Agent Incorporation into Silicone Enables Real‐Time Flow‐Structure Analysis of Mammalian Vein‐Inspired Soft Pumps , 2015 .

[137]  Arianna Menciassi,et al.  A Soft Modular Manipulator for Minimally Invasive Surgery: Design and Characterization of a Single Module , 2016, IEEE Transactions on Robotics.

[138]  Daniela Rus,et al.  Design, kinematics, and control of a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[139]  Edward L. White,et al.  Sensor enabled closed-loop bending control of soft beams , 2016 .

[140]  Mariangela Manti,et al.  Stiffening in Soft Robotics: A Review of the State of the Art , 2016, IEEE Robotics & Automation Magazine.

[141]  Yi Sun,et al.  A Miniature Soft Robotic Manipulator Based on Novel Fabrication Methods , 2016, IEEE Robotics and Automation Letters.

[142]  Stephen A. Morin,et al.  Soft Surfaces for the Reversible Control of Thin‐Film Microstructure and Optical Reflectance , 2016, Advanced materials.

[143]  Huichan Zhao,et al.  A Stretchable Multicolor Display and Touch Interface Using Photopatterning and Transfer Printing , 2016, Advanced materials.

[144]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[145]  Arianna Menciassi,et al.  A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper , 2016 .

[146]  Kaspar Althoefer,et al.  Total mesorectal excision using a soft and flexible robotic arm: a feasibility study in cadaver models , 2016, Surgical Endoscopy.

[147]  Matteo Cianchetti,et al.  Modelling the nonlinear response of fibre-reinforced bending fluidic actuators , 2016, ArXiv.

[148]  Jamie Paik,et al.  Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method   , 2016 .

[149]  Adhesion of Morphologically Distinct Crystals to and Selective Release from Elastomeric Surfaces , 2016 .

[150]  MazzolaiBarbara,et al.  Sculpting Soft Machines , 2016 .

[151]  Eric J. Barth,et al.  Design, Additive Manufacture, and Control of a Pneumatic MR-Compatible Needle Driver , 2016, IEEE Transactions on Robotics.

[152]  Sanlin S. Robinson,et al.  Highly stretchable electroluminescent skin for optical signaling and tactile sensing , 2016, Science.

[153]  Ross A. Knepper,et al.  A Helping Hand: Soft Orthosis with Integrated Optical Strain Sensors and EMG Control , 2016, IEEE Robotics & Automation Magazine.

[154]  Metin Sitti,et al.  Inflated Soft Actuators with Reversible Stable Deformations , 2016, Advanced materials.

[155]  Thanh Nho Do,et al.  A survey on actuators-driven surgical robots , 2016 .

[156]  James C. Weaver,et al.  Soft robotic sleeve supports heart function , 2017, Science Translational Medicine.

[157]  In , 2019, Reading Sedgwick.