Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets

This paper studies, for UP, two topics that have been intensely studied for NP: Boolean hierarchies and the consequences of the existence of sparse Turing-complete sets. Unfortunately, as is often the case, the results for NP draw on special properties of NP that do not seem to carry over straightforwardly to UP. For example, it is known for NP (and more generally for any class containing \Sigma^* and \emptyset and closed under union and intersection) that the symmetric difference hierarchy, the Boolean hierarchy, and the Boolean closure all are equal. We prove that closure under union is not needed for this claim: For any class \cal K that contains \Sigma^* and \emptyset and is closed under intersection (e.g., UP, US, and FewP), the symmetric difference hierarchy over \cal K, the Boolean hierarchy over \cal K, and the Boolean closure of \cal K all are equal. On the other hand, we show that two hierarchies---the Hausdorff hierarchy and the nested difference hierarchy---which in the NP case are equal to the Boolean closure fail to be equal for the UP case in some relativized worlds. Regarding sparse Turing-complete sets for UP, we prove that if UP has sparse Turing-complete sets, then the levels of the unambiguous polynomial hierarchy are simpler than one would otherwise expect: they collapse one level in terms of their location in the promise unambiguous polynomial hierarchy. We obtain related results under the weaker assumption that UP has sparse Turing-hard sets.

[1]  Jin-Yi Cai,et al.  Graph Minimal Uncolorability is D^P-Complete , 1987, SIAM J. Comput..

[2]  Uwe Schöning,et al.  A Low and a High Hierarchy within NP , 1983, J. Comput. Syst. Sci..

[3]  Jin-Yi Cai,et al.  Promises and fault-tolerant database access , 1993 .

[4]  Andreas Blass,et al.  On the Unique Satisfiability Problem , 1982, Inf. Control..

[5]  Jin-Yi Cai,et al.  The Boolean Hierarchy: Hardware over NP , 1986, SCT.

[6]  Osamu Watanabe,et al.  How hard are sparse sets? , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[7]  Osamu Watanabe,et al.  On polynomial time bounded truth-table reducibility of NP sets to sparse sets , 1990, STOC '90.

[8]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[9]  Osamu Watanabe,et al.  On Hardness of One-Way Functions , 1988, Inf. Process. Lett..

[10]  Lane A. Hemaspaandra,et al.  Defying Upward and Downward Separation , 1993, Inf. Comput..

[11]  Timothy J. Long,et al.  Relativizing complexity classes with sparse oracles , 1986, JACM.

[12]  Jim Kadin,et al.  P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..

[13]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[14]  Juris Hartmanis,et al.  Robust Machines Accept Easy Sets , 1990, Theor. Comput. Sci..

[15]  Neil Immerman,et al.  Sparse sets in NP-P: Exptime versus nexptime , 1983, STOC.

[16]  Gerd Wechsung,et al.  A survey on counting classes , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[17]  Richard Chang,et al.  On the Structure of NP Computations under Boolean Operators , 1991 .

[18]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[19]  Peter Rossmanith,et al.  Unambiguous polynomial hierarchies and exponential size , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[20]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[21]  Paul Young How reductions to sparse sets collapse the polynomial-time hierarchy: a primer: Part II restricted polynomial-time reductions , 1992, SIGA.

[22]  J. Köbler,et al.  New Collapse Consequences of NP Having Small Circuits , 1999, SIAM J. Comput..

[23]  Jörg Rothe,et al.  Upward Separation for FewP and Related Classes , 1994, Inf. Process. Lett..

[24]  Philip S. Yu,et al.  Smart SMART Bounds for Weighted Response Time Scheduling , 1999, SIAM J. Comput..

[25]  Richard Chang,et al.  The Boolean Hierarchy and the Polynomial Hierarchy: A Closer Connection , 1996, SIAM J. Comput..

[26]  Lane A. Hemaspaandra,et al.  Strong Forms of Balanced Immunity , 1995 .

[27]  Mihalis Yannakakis,et al.  The complexity of facets (and some facets of complexity) , 1982, STOC '82.

[28]  Gerd Wechsung,et al.  Counting classes with finite acceptance types , 1987 .

[29]  Richard Beigel,et al.  Downward separation fails catastrophically for limited nondeterminism classes , 1994, Computational Complexity Conference.

[30]  Neil Immerman,et al.  Sparse Sets in NP-P: EXPTIME versus NEXPTIME , 1985, Inf. Control..

[31]  Ker-I Ko,et al.  On Circuit-Size Complexity and the Low Hierarchy in NP , 1985, SIAM J. Comput..

[32]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[33]  L. Hemachandra,et al.  Counting in structural complexity theory , 1987 .

[34]  Russell Impagliazzo,et al.  Decision versus search problems in super-polynomial time , 1989, 30th Annual Symposium on Foundations of Computer Science.

[35]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[36]  José L. Balcázar,et al.  The polynomial-time hierarchy and sparse oracles , 1986, JACM.

[37]  Eric Allender,et al.  The Complexity of Sparse Sets in P , 1986, SCT.

[38]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[39]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[40]  Edith Hemaspaandra,et al.  Quasi-injective Reductions , 1994, Theor. Comput. Sci..

[41]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[42]  John E. Hopcroft,et al.  Recent Directions in Algorithmic Research , 1981, Theoretical Computer Science.

[43]  Lane A. Hemaspaandra,et al.  Separating Complexity Classes With Tally Oracles , 1992, Theor. Comput. Sci..

[44]  M. W. Shields An Introduction to Automata Theory , 1988 .

[45]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[46]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[47]  Jin-Yi Cai Probability One Separation of the Boolean Hierarchy , 1987, STACS.

[48]  Chris N. Potts,et al.  Scheduling Identical Parallel Machines to Minimize Total Weighted Completion Time , 1994, Discret. Appl. Math..

[49]  W. Groß Grundzüge der Mengenlehre , 1915 .

[50]  Jim Kadin The polynomial time hierarchy collapses if the Boolean hierarchy collapses , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[51]  Nikolai K. Vereshchagin,et al.  Banishing Robust Turing Completeness , 1992, LFCS.

[52]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[53]  Alan L. Selman Natural Self-Reducible Sets , 1988, SIAM J. Comput..

[54]  Richard Beigel,et al.  On the relativized power of additional accepting paths , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[55]  Uwe Schöning,et al.  Complexity and Structure , 1986, Lecture Notes in Computer Science.

[56]  Paul Young,et al.  Strong Separations for the Boolean Hierarchy over RP , 1990, Int. J. Found. Comput. Sci..

[57]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1986, Theor. Comput. Sci..

[58]  Rolf Niedermeier,et al.  Extended Locally Definable Acceptance Types (Extended Abstract) , 1993, STACS.

[59]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[60]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[61]  Alberto Bertoni,et al.  Generalized Boolean Hierarchies and Boolean Hierarchies Over RP (Conference Abstract) , 1989, FCT.