Using Context Annotated Mobility Profiles to Recruit Data Collectors in Participatory Sensing

Mobile phones and accompanying network layers provide a platform to capture and share location, image, and acoustic data. This substrate enables participatory sensing: coordinated data gathering by individuals and communities to explore the world around them. Realizing such widespread and participatory sensing poses difficult challenges. In this paper, we discuss one particular challenge: creating a recruitment service to enable sensing organizers to select well-suited participants. Our approach concentrates on finding participants based on geographic and temporal coverage, as determined by context-annotated mobility profiles that model transportation mode, location, and time. We outline a three-stage recruitment framework designed to be parsimonious so as to limit risk to participants by reducing the location and context information revealed to the system. Finally, we illustrate the utility of the framework, along with corresponding modeling technique for mobility information, by analyzing data from a pilot mobility study consisting of ten users.

[1]  Andrew T. Campbell,et al.  Bubble-Sensing : A New Paradigm for Binding a Sensing Task to the Physical World using Mobile Phones , 2008 .

[2]  Mark H. Hansen,et al.  Participatory sensing - eScholarship , 2006 .

[3]  Shashi Shekhar,et al.  Discovering personal gazetteers: an interactive clustering approach , 2004, GIS '04.

[4]  Deborah Estrin,et al.  Participatory design of sensing networks: strengths and challenges , 2008, PDC.

[5]  Deborah Estrin,et al.  Participatory Privacy in Urban Sensing , 2008 .

[6]  Emiliano Miluzzo,et al.  Poster Abstract: Virtual Sensing Range , 2006 .

[7]  J. Osborne Notes on the use of data transformations. , 2002 .

[8]  Marta C. González,et al.  Understanding individual human mobility patterns , 2008, Nature.

[9]  Xin Liu,et al.  Video summarization using singular value decomposition , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[10]  H. Nissenbaum Privacy as contextual integrity , 2004 .

[11]  Julie E. Cohen Privacy, Visibility, Transparency, and Exposure , 2007 .

[12]  Telecommunications Board,et al.  Engaging Privacy and Information Technology in a Digital Age , 2007 .

[13]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[14]  Xing Xie,et al.  Learning transportation mode from raw gps data for geographic applications on the web , 2008, WWW.

[15]  Andrew T. Campbell,et al.  Techniques for Improving Opportunistic Sensor Networking Performance , 2008, DCOSS.

[16]  Deborah Estrin,et al.  Network System Challenges in Selective Sharing and Verification for Personal, Social, and Urban-Scale Sensing Applications , 2006, HotNets.

[17]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[18]  Qi He,et al.  The quest for personal control over mobile location privacy , 2004, IEEE Communications Magazine.

[19]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[20]  Romit Roy Choudhury,et al.  Micro-Blog: sharing and querying content through mobile phones and social participation , 2008, MobiSys '08.

[21]  Mirco Musolesi,et al.  The Rise of People-Centric Sensing , 2008, IEEE Internet Comput..

[22]  Tristan Henderson,et al.  Privacy in Location-Aware Computing Environments , 2007, IEEE Pervasive Computing.

[23]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[24]  Deborah Estrin,et al.  A framework for data quality and feedback in participatory sensing , 2007, SenSys '07.

[25]  Gaetano Borriello,et al.  Extracting places from traces of locations , 2004, MOCO.

[26]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[27]  Daren C. Brabham Crowdsourcing as a Model for Problem Solving , 2008 .

[28]  武彦 福島 持続可能性(Sustainability)の要件 , 2006 .

[29]  Gaurav S. Sukhatme,et al.  Reconfiguration methods for mobile sensor networks , 2007, TOSN.

[30]  David W. McDonald,et al.  Activity sensing in the wild: a field trial of ubifit garden , 2008, CHI.

[31]  Deborah Estrin,et al.  Evaluating Participation and Performance in Participatory Sensing , 2008 .

[32]  Ahmed Helmy,et al.  Mining behavioral groups in large wireless LANs , 2006, MobiCom '07.

[33]  John Krumm,et al.  Route Prediction from Trip Observations , 2008 .

[34]  Deborah Estrin,et al.  Determining transportation mode on mobile phones , 2008, 2008 12th IEEE International Symposium on Wearable Computers.

[35]  戴兵,et al.  基于Google Maps API的校园地图设计 , 2008 .

[36]  Min Y. Mun,et al.  Parsimonious Mobility Classification using GSM and WiFi Traces , 2008 .

[37]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[38]  Cyrus Shahabi,et al.  Location Privacy in Geospatial Decision-Making , 2007, DNIS.

[39]  Emiliano Miluzzo,et al.  MetroSense Project: People-Centric Sensing at Scale , 2006 .

[40]  Andreas Krause,et al.  Toward Community Sensing , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[41]  Emiliano Miluzzo,et al.  Virtual sensing range , 2006, SenSys '06.