Statistical Inference: An Integrated Bayesian/Likelihood Approach

Theories of Statistical Inference Example Statistical models The likelihood function Theories Nonmodel-based repeated sampling Conclusion The Integrated Bayes/Likelihood Approach Introduction Probability Prior ignorance The importance of parametrization The simple/simple hypothesis testing problem The simple/composite hypothesis testing problem Posterior likelihood approach Bayes factors The comparison of unrelated models Example-GHQ score and psychiatric diagnosis t-Tests and Normal Variance Tests One-sample t-test Two samples: equal variances The two-sample test Two samples: different variances The normal model variance Variance heterogeneity test Unified Analysis of Finite Populations Sample selection indicators The Bayesian bootstrap Sampling without replacement Regression models More general regression models The multinomial model for multiple populations Complex sample designs A complex example Discussion Regression and Analysis of Variance Multiple regression Nonnested models Binomial and Multinomial Data Single binomial samples Single multinomial samples Two-way tables for correlated proportions Multiple binomial samples Two-way tables for categorical responses-no fixed margins Two-way tables for categorical responses-one fixed margin Multinomial "nonparametric" analysis Goodness of Fit and Model Diagnostics Frequentist model diagnostics Bayesian model diagnostics The posterior predictive distribution Multinomial deviance computation Model comparison through posterior deviances Examples Simulation study Discussion Complex Models The data augmentation algorithm Two-level variance component models Test for a zero variance component Finite mixtures References Author Index Subject Index

[1]  C. Field,et al.  Risk Management and Climate Change , 2012 .

[2]  David J. Lunn,et al.  The BUGS Book: A Practical Introduction to Bayesian Analysis , 2013 .

[3]  Anthony O'Hagan,et al.  Probabilistic uncertainty specification: Overview, elaboration techniques and their application to a mechanistic model of carbon flux , 2012, Environ. Model. Softw..

[4]  E. Masicampo,et al.  A peculiar prevalence of p values just below .05 , 2012, Quarterly journal of experimental psychology.

[5]  Leif D. Nelson,et al.  False-Positive Psychology , 2011, Psychological science.

[6]  J. Kadane Principles of Uncertainty , 2011 .

[7]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[8]  Simon French,et al.  Aggregating expert judgement , 2011 .

[9]  Jim Q. Smith,et al.  Bayesian Decision Analysis: Principles and Practice , 2010 .

[10]  P. Alpert,et al.  Reassessment of rain enhancement experiments and operations in Israel including synoptic considerations , 2010 .

[11]  M. Lozier,et al.  Deconstructing the Conveyor Belt , 2010, Science.

[12]  A. Philip Dawid,et al.  Beware of the DAG! , 2008, NIPS Causality: Objectives and Assessment.

[13]  Jie W Weiss,et al.  Bayesian Statistical Inference for Psychological Research , 2008 .

[14]  S. Stigler R. A. Fisher in the 21st Century , 2008 .

[15]  J. Brooks Why most published research findings are false: Ioannidis JP, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece , 2008 .

[16]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[17]  John P. A. Ioannidis Why Most Published Research Findings Are False: Author's Reply to Goodman and Greenland , 2007, PLoS medicine.

[18]  James C McWilliams,et al.  Irreducible imprecision in atmospheric and oceanic simulations , 2007, Proceedings of the National Academy of Sciences.

[19]  Sander Greenland,et al.  Why Most Published Research Findings Are False: Problems in the Analysis , 2007, PLoS medicine.

[20]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[21]  Jeremy E. Oakley,et al.  Uncertain Judgements: Eliciting Experts' Probabilities , 2006 .

[22]  David R. Cox,et al.  PRINCIPLES OF STATISTICAL INFERENCE , 2017 .

[23]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[24]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[25]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[26]  R. Jeffrey Subjective Probability: The Real Thing , 2004 .

[27]  J. Ferreirós From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95 , 2004 .

[28]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[29]  G. A. Young,et al.  Recent Developments in Bootstrap Methodology , 2003 .

[30]  D. Wallace Everything and more : a compact history of ∞ , 2003 .

[31]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[32]  A. Dawid Influence Diagrams for Causal Modelling and Inference , 2002 .

[33]  James Ladyman,et al.  Understanding Philosophy of Science , 2001 .

[34]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[35]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[36]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[37]  J. Rosenthal A First Look at Rigorous Probability Theory , 2000 .

[38]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[39]  Steven Goodman Toward Evidence-Based Medical Statistics. 2: The Bayes Factor , 1999, Annals of Internal Medicine.

[40]  S. Goodman Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy , 1999, Annals of Internal Medicine.

[41]  David Banks Operational Subjective Statistical Methods, by F. Lad , 1999 .

[42]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[43]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[44]  P. Spreij Probability and Measure , 1996 .

[45]  F. Y. Edgeworth,et al.  The theory of statistics , 1996 .

[46]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[47]  J. Stillwell,et al.  In search of infinity , 1995 .

[48]  R. Berger,et al.  P Values Maximized Over a Confidence Set for the Nuisance Parameter , 1994 .

[49]  J. Paris The Uncertain Reasoner's Companion: A Mathematical Perspective , 1994 .

[50]  M. J. Osler Laws and symmetry , 1993 .

[51]  B. D. Finetti,et al.  Foresight: Its Logical Laws, Its Subjective Sources , 1992 .

[52]  Peter Whittle,et al.  Probability via expectation , 1992 .

[53]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[54]  R. Cooke Experts in Uncertainty: Opinion and Subjective Probability in Science , 1991 .

[55]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[56]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[57]  David R. Cox,et al.  Role of Models in Statistical Analysis , 1990 .

[58]  E. Lehmann Model Specification: The Views of Fisher and Neyman, and Later Developments , 1990 .

[59]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[60]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[61]  C. Howson,et al.  Scientific Reasoning: The Bayesian Approach , 1989 .

[62]  Harold I. Brown,et al.  How the Laws of Physics Lie , 1988 .

[63]  D. Aldous Exchangeability and related topics , 1985 .

[64]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[65]  Fred S. Roberts Measurement Theory with Applications to Decisionmaking, Utility, and the Social Sciences: Foreword , 1984 .

[66]  G. Grimmett,et al.  Probability and random processes , 2002 .

[67]  Chris Chatfield,et al.  The Analysis of Time Series , 1990 .

[68]  David A. Freedman,et al.  A Remark on the Difference between Sampling with and without Replacement , 1977 .

[69]  H. Keisler Foundations of infinitesimal calculus , 1976 .

[70]  M. Degroot Doing What Comes Naturally: Interpreting a Tail Area as a Posterior Probability or as a Likelihood Ratio , 1973 .

[71]  Bruno de Finetti,et al.  Probability, induction and statistics , 1972 .

[72]  H. D. De Kanter [The philosophy of statistics]. , 1972, Ginecología y Obstetricia de México.

[73]  M. Degroot Optimal Statistical Decisions , 1970 .

[74]  I. Hacking Logic of Statistical Inference , 1966 .

[75]  Leonard J. Savage,et al.  How to Gamble If You Must: Inequalities for Stochastic Processes , 1965 .

[76]  M. S. Bartlett,et al.  Statistical methods and scientific inference. , 1957 .

[77]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[78]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[79]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[80]  L. M. M.-T. Theory of Probability , 1929, Nature.

[81]  D. Hilbert Über das Unendliche , 1926 .

[82]  D. W. D.Sc.,et al.  XLII. On certain fundamental principles of scientific inquiry , 1921 .