High-dimensional estimation via sum-of-squares proofs

Estimation is the computational task of recovering a hidden parameter $x$ associated with a distribution $D_x$, given a measurement $y$ sampled from the distribution. High dimensional estimation problems arise naturally in statistics, machine learning, and complexity theory. Many high dimensional estimation problems can be formulated as systems of polynomial equations and inequalities, and thus give rise to natural probability distributions over polynomial systems. Sum-of-squares proofs provide a powerful framework to reason about polynomial systems, and further there exist efficient algorithms to search for low-degree sum-of-squares proofs. Understanding and characterizing the power of sum-of-squares proofs for estimation problems has been a subject of intense study in recent years. On one hand, there is a growing body of work utilizing sum-of-squares proofs for recovering solutions to polynomial systems when the system is feasible. On the other hand, a general technique referred to as pseudocalibration has been developed towards showing lower bounds on the degree of sum-of-squares proofs. Finally, the existence of sum-of-squares refutations of a polynomial system has been shown to be intimately connected to the existence of spectral algorithms. In this article we survey these developments.

[1]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[2]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[3]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[4]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[5]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[6]  S. Leurgans,et al.  A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..

[7]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[8]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[9]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[10]  Sanjoy Dasgupta,et al.  Learning mixtures of Gaussians , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[11]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[12]  U. Feige,et al.  Finding and certifying a large hidden clique in a semirandom graph , 2000, Random Struct. Algorithms.

[13]  Sanjeev Arora,et al.  Learning mixtures of arbitrary gaussians , 2001, STOC '01.

[14]  Dima Grigoriev,et al.  Complexity of Positivstellensatz proofs for the knapsack , 2002, computational complexity.

[15]  Dima Grigoriev,et al.  Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity , 2001, Theor. Comput. Sci..

[16]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[17]  U. Feige Relations between average case complexity and approximation complexity , 2002, STOC '02.

[18]  Uriel Feige,et al.  On the optimality of the random hyperplane rounding technique for MAX CUT , 2002, Random Struct. Algorithms.

[19]  Yonatan Bilu,et al.  A Gap in Average Proof Complexity , 2002, Electron. Colloquium Comput. Complex..

[20]  The 3-SAT problem with large number of clauses in the ∞-replica symmetry breaking scheme , 2001, cond-mat/0108433.

[21]  Robert Krauthgamer,et al.  The Probable Value of the Lovász--Schrijver Relaxations for Maximum Independent Set , 2003, SIAM J. Comput..

[22]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[23]  Santosh S. Vempala,et al.  A spectral algorithm for learning mixture models , 2004, J. Comput. Syst. Sci..

[24]  Dimitris Achlioptas,et al.  On Spectral Learning of Mixtures of Distributions , 2005, COLT.

[25]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[26]  Elchanan Mossel,et al.  Learning nonsingular phylogenies and hidden Markov models , 2005, STOC '05.

[27]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.

[28]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Madhur Tulsiani CSP gaps and reductions in the lasserre hierarchy , 2009, STOC '09.

[30]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[31]  Mikhail Belkin,et al.  Toward Learning Gaussian Mixtures with Arbitrary Separation , 2010, COLT.

[32]  Adam Tauman Kalai,et al.  Efficiently learning mixtures of two Gaussians , 2010, STOC '10.

[33]  Antonio Auffinger,et al.  Random Matrices and Complexity of Spin Glasses , 2010, 1003.1129.

[34]  Ankur Moitra,et al.  Settling the Polynomial Learnability of Mixtures of Gaussians , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[35]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[36]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[37]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[38]  L. Trevisan On Khot’s unique games conjecture , 2012 .

[39]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[40]  T. Tao Topics in Random Matrix Theory , 2012 .

[41]  Giorgio Ottaviani,et al.  On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..

[42]  Aditya Bhaskara,et al.  Polynomial integrality gaps for strong SDP relaxations of Densest k-subgraph , 2011, SODA.

[43]  Sham M. Kakade,et al.  Learning mixtures of spherical gaussians: moment methods and spectral decompositions , 2012, ITCS '13.

[44]  Avi Wigderson,et al.  Sum-of-squares Lower Bounds for Planted Clique , 2015, STOC.

[45]  Guy Kindler,et al.  On the optimality of semidefinite relaxations for average-case and generalized constraint satisfaction , 2013, ITCS '13.

[46]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[47]  David Steurer,et al.  Rounding sum-of-squares relaxations , 2013, Electron. Colloquium Comput. Complex..

[48]  T. Rothvoss The Lasserre hierarchy in Approximation algorithms Lecture Notes for the MAPSP 2013 Tutorial Preliminary version , 2013 .

[49]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[50]  Aditya Bhaskara,et al.  Smoothed analysis of tensor decompositions , 2013, STOC.

[51]  Nathan Linial,et al.  From average case complexity to improper learning complexity , 2013, STOC.

[52]  Ryota Tomioka,et al.  Spectral norm of random tensors , 2014, 1407.1870.

[53]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[54]  Anima Anandkumar,et al.  A Spectral Algorithm for Latent Dirichlet Allocation , 2012, Algorithmica.

[55]  Tengyu Ma,et al.  Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms , 2015, APPROX-RANDOM.

[56]  Ryan O'Donnell,et al.  How to Refute a Random CSP , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[57]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[58]  Jonathan Shi,et al.  Tensor principal component analysis via sum-of-square proofs , 2015, COLT.

[59]  David Steurer,et al.  Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method , 2014, STOC.

[60]  Yudong Chen,et al.  Incoherence-Optimal Matrix Completion , 2013, IEEE Transactions on Information Theory.

[61]  Pravesh Kothari,et al.  Sum of Squares Lower Bounds from Pairwise Independence , 2015, STOC.

[62]  Andrea Montanari,et al.  Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems , 2015, COLT.

[63]  Tengyu Ma,et al.  Polynomial-Time Tensor Decompositions with Sum-of-Squares , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[64]  Prasad Raghavendra,et al.  On the Integrality Gap of Degree-4 Sum of Squares for Planted Clique , 2016, SODA.

[65]  Tselil Schramm,et al.  Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors , 2015, STOC.

[66]  Aaron Potechin,et al.  Bounds on the Norms of Uniform Low Degree Graph Matrices , 2016, APPROX-RANDOM.

[67]  Andrea Montanari,et al.  Spectral Algorithms for Tensor Completion , 2016, ArXiv.

[68]  Ankur Moitra,et al.  Noisy tensor completion via the sum-of-squares hierarchy , 2015, Mathematical Programming.

[69]  Pravesh Kothari,et al.  A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[70]  Tselil Schramm,et al.  Fast and robust tensor decomposition with applications to dictionary learning , 2017, COLT.

[71]  Sanjeev Arora,et al.  Provable learning of noisy-OR networks , 2016, STOC.

[72]  Santosh S. Vempala,et al.  Statistical Algorithms and a Lower Bound for Detecting Planted Cliques , 2012, J. ACM.

[73]  Ryan O'Donnell,et al.  Sum of squares lower bounds for refuting any CSP , 2017, STOC.

[74]  Prasad Raghavendra,et al.  Strongly refuting random CSPs below the spectral threshold , 2016, STOC.

[75]  David Steurer,et al.  Exact tensor completion with sum-of-squares , 2017, COLT.

[76]  Prasad Raghavendra,et al.  The Power of Sum-of-Squares for Detecting Hidden Structures , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[77]  Venkatesan Guruswami,et al.  Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere , 2016, APPROX-RANDOM.

[78]  Jerry Li,et al.  Mixture models, robustness, and sum of squares proofs , 2017, STOC.

[79]  Daniel M. Kane,et al.  List-decodable robust mean estimation and learning mixtures of spherical gaussians , 2017, STOC.

[80]  Pravesh Kothari,et al.  Robust moment estimation and improved clustering via sum of squares , 2018, STOC.