A kernel based approach for LPV subspace identification

We present a Linear Parameter Varying (LPV) subspace identification method that takes advantage of the recent developments in the Machine Learning community. More specifically, a Radial Basis Function kernel is used to model the predictor’s impulse response of an LPV model and the involved hyperparameters are estimated via a marginal likelihood maximization algorithm. This step is followed by the estimation of the predictor’s impulse response coefficients, evaluated at the training points. Finally, these values are used to estimate the related coefficients of the LPV model. From this point, the algorithm follows the same steps as in the LPV-PBSIDopt algorithm. Simulation results verify that this algorithm can improve the accuracy of the estimated model with respect to the state-of-the-art LPV subspace methods.

[1]  Michel Verhaegen,et al.  Closed-loop subspace identification methods: an overview , 2013 .

[2]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[3]  Alessandro Chiuso,et al.  The role of vector autoregressive modeling in predictor-based subspace identification , 2007, Autom..

[4]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[5]  Javad Mohammadpour,et al.  A Bayesian approach for estimation of linear-regression LPV models , 2014, 53rd IEEE Conference on Decision and Control.

[6]  Giuseppe De Nicolao,et al.  A new kernel-based approach for linear system identification , 2010, Autom..

[7]  Michel Verhaegen,et al.  Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..

[8]  Marco Lovera,et al.  LPV Modelling and Identification: An Overview , 2013 .

[9]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[10]  Michel Verhaegen,et al.  Subspace identification of MIMO LPV systems using a periodic scheduling sequence , 2007, Autom..

[11]  Hossam Seddik Abbas,et al.  On the State-Space Realization of LPV Input-Output Models: Practical Approaches , 2012, IEEE Transactions on Control Systems Technology.

[12]  Lennart Ljung,et al.  Kernel methods in system identification, machine learning and function estimation: A survey , 2014, Autom..

[13]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[14]  M. Lovera,et al.  Identification for gain-scheduling: a balanced subspace approach , 2007, 2007 American Control Conference.

[15]  Roland Toth,et al.  Modeling and Identification of Linear Parameter-Varying Systems , 2010 .

[16]  Henrik Ohlsson,et al.  On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..

[17]  Michel Verhaegen,et al.  Subspace identification of multivariable linear parameter-varying systems , 2002, Autom..

[18]  Vincent Verdult,et al.  Kernel methods for subspace identification of multivariable LPV and bilinear systems , 2005, Autom..

[19]  Alessandro Chiuso,et al.  Prediction error identification of linear systems: A nonparametric Gaussian regression approach , 2011, Autom..

[20]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..