Flocking Multiple Microparticles With Automatically Controlled Optical Tweezers: Solutions and Experiments

This paper presents an efficient approach to achieve microparticles flocking with robotics and optical tweezers technologies. All particles trapped by optical tweezers can be automatically moved toward a predefined region without collision. The main contribution of this paper lies in the proposal of several solutions to the flocking manipulation of microparticles in microenvironments. First, a simple flocking controller is proposed to generate the desired positions and velocities for particles' movement. Second, a velocity saturation method is implemented to prevent the desired velocities from exceeding a safe limit. Third, a two-layer control architecture is proposed for the motion control of optical tweezers. This architecture can help make many robotic manipulations achievable under microenvironments. The proposed approach with these solutions can be applied to many bioapplications especially in cell engineering and biomedicine. Experiments on yeast cells with a robot-tweezers system are finally performed to verify the effectiveness of the proposed approach.

[1]  Calin Belta,et al.  Abstraction and control for Groups of robots , 2004, IEEE Transactions on Robotics.

[2]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[3]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[4]  Jian Chen,et al.  Flocking of micro-scale particles with robotics and optical tweezers technologies , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Sagar Chowdhury,et al.  Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins. , 2011, Journal of biomedical optics.

[6]  Sagar Chowdhury,et al.  Indirect optical gripping with triplet traps , 2011 .

[7]  Dong Sun,et al.  Transportation of biological cells with robot-tweezer manipulation system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  Steven M. Block,et al.  Optical tweezers : a new tool for biophysics , 1990 .

[9]  Vincent Germain,et al.  Automated trapping, assembly, and sorting with holographic optical tweezers. , 2006, Optics express.

[10]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[11]  Richard M. Murray,et al.  Recent Research in Cooperative Control of Multivehicle Systems , 2007 .

[12]  Dong Sun,et al.  Automatic flocking manipulation of micro particles with robot-tweezers technologies , 2012, 2012 IEEE International Conference on Robotics and Automation.

[13]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[14]  Toshio Fukuda,et al.  On-chip fabrication and assembly of rotational microstructures , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[16]  Dong Sun,et al.  Influence of semiflexible structural features of actin cytoskeleton on cell stiffness based on actin microstructural modeling. , 2012, Journal of biomechanics.

[17]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[18]  K Helmerson,et al.  Optical tweezers-based immunosensor detects femtomolar concentrations of antigens. , 1997, Clinical chemistry.

[19]  M. Tasakorn,et al.  Nanoscopic Volume Trapping and Transportation Using a PANDA Ring Resonator for Drug Delivery , 2011, IEEE Transactions on NanoBioscience.

[20]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[21]  Yu Sun,et al.  Single Cell Deposition and Patterning with a Robotic System , 2010, PloS one.

[22]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[23]  M J Padgett,et al.  Hands-on with optical tweezers: a multitouch interface for holographic optical trapping. , 2009, Optics express.

[24]  Sagar Chowdhury,et al.  Investigation of Automated Cell Manipulation in Optical Tweezers-Assisted Microfluidic Chamber Using Simulations , 2011 .

[25]  R. Hochmuth,et al.  Micropipette aspiration of living cells. , 2000, Journal of biomechanics.

[26]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[27]  Guangyong Li,et al.  Development of augmented reality system for AFM-based nanomanipulation , 2004, IEEE/ASME Transactions on Mechatronics.

[28]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[29]  Aristides A. G. Requicha,et al.  Automated Nanomanipulation with Atomic Force Microscopes , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  John R. Spletzer,et al.  Convex Optimization Strategies for Coordinating Large-Scale Robot Formations , 2007, IEEE Transactions on Robotics.

[31]  E. Shaw The Schooling of Fishes , 1962 .

[32]  Randal W. Beard,et al.  A coordination architecture for spacecraft formation control , 2001, IEEE Trans. Control. Syst. Technol..

[33]  Xinyu Liu,et al.  Autonomous Zebrafish Embryo Injection Using a Microrobotic System , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[34]  Satyandra K. Gupta,et al.  Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations , 2010, IEEE Transactions on Automation Science and Engineering.

[35]  Wenhao Huang,et al.  Mechanical Characterization of Human Red Blood Cells Under Different Osmotic Conditions by Robotic Manipulation With Optical Tweezers , 2010, IEEE Transactions on Biomedical Engineering.

[36]  Lovekesh Vig,et al.  Multi-robot coalition formation , 2006, IEEE Transactions on Robotics.

[37]  Robert C. Gauthier,et al.  Optical levitation of spheres: analytical development and numerical computations of the force equations , 1995 .

[38]  Gang Feng,et al.  A Synchronization Approach to Trajectory Tracking of Multiple Mobile Robots While Maintaining Time-Varying Formations , 2009, IEEE Transactions on Robotics.

[39]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Dieter Blaas,et al.  Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells , 2004, Electrophoresis.

[41]  Kar-Han Tan,et al.  High Precision Formation Control of Mobile Robots Using Virtual Structures , 1997, Auton. Robots.

[42]  Dong Sun,et al.  Force characterization of live cells in automated transportation with robot-tweezers manipulation system , 2010, 2010 IEEE International Conference on Mechatronics and Automation.

[43]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[44]  Hakho Lee,et al.  Manipulation of biological cells using a microelectromagnet matrix , 2004 .

[45]  Dong Sun,et al.  Moving Groups of Microparticles Into Array With a Robot–Tweezers Manipulation System , 2012, IEEE Transactions on Robotics.

[46]  Gregory Timp,et al.  Optimal optical trap for bacterial viability. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Yantao Shen,et al.  Characterization of Living Drosophila Embryos using Micro Robotic Manipulation System , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Jie Yang,et al.  Localization for Multirobot Formations in Indoor Environment , 2010, IEEE/ASME Transactions on Mechatronics.