Time-domain performance based non-linear state feedback control of constrained linear systems

This article describes a method to design a non-linear state feedback controller that meets a set of time-domain specifications not attainable by linear state feedback. Using a constrained polynomial interpolation technique, an input signal is computed that satisfies the desired time-domain constraints on the input and state-trajectories. The computed input is constructed by non-linear combinations of the states, such that a non-linear state feedback law is obtained. Stability of the resulting closed-loop polynomial system is analysed using sum-of-squares techniques. An illustrative example is presented, showing that the proposed non-linear controller outperforms the best linear static state feedback. To validate the proposed method, experiments on a fourth-order motion system have been carried out.

[1]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[2]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[3]  Sophie Tarbouriech,et al.  Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs , 2005, IEEE Transactions on Automatic Control.

[4]  W. Haddad,et al.  Robust nonlinear feedback control for uncertain linear systems with nonquadratic performance criteria , 1998 .

[5]  Michael Sebek,et al.  The polynomial toolbox for matlab , 1997 .

[6]  R. Bass,et al.  Optimal nonlinear feedback control derived from quartic and higher-order performance criteria , 1966 .

[7]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[8]  A. Papachristodoulou,et al.  A tutorial on sum of squares techniques for systems analysis , 2005, Proceedings of the 2005, American Control Conference, 2005..

[9]  Z. Rekasius,et al.  Suboptimal design of intentionally nonlinear controllers , 1964 .

[10]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[11]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[12]  Dennis S. Bernstein,et al.  Nonquadratic Cost and Nonlinear Feedback Control , 1991, 1991 American Control Conference.

[13]  Didier Henrion,et al.  LMIs for constrained polynomial interpolation with application in trajectory planning , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[14]  B. Anderson,et al.  Nonlinear regulator theory and an inverse optimal control problem , 1973 .

[15]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[16]  Marcel François Heertjes,et al.  Stability and performance of a variable gain controller with application to a dvd storage drive , 2004, Autom..

[17]  D. Williamson,et al.  Design of nonlinear regulators for linear plants , 1977 .

[18]  S. Asseo Optimal control of a servo derived from nonquadratic performance criteria , 1969 .

[19]  E. Mosca,et al.  Nonlinear control of constrained linear systems via predictive reference management , 1997, IEEE Trans. Autom. Control..

[20]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[21]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[22]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[23]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[24]  A. Packard,et al.  Stability region analysis using sum of squares programming , 2006, 2006 American Control Conference.

[25]  Jean Lévine,et al.  Flat output characterization for linear systems using polynomial matrices , 2003, Syst. Control. Lett..

[26]  Sudarshan P. Bhat,et al.  Precise Point-to-Point Positioning Control of Flexible Structures , 1990 .

[27]  A. Papachristodoulou Scalable analysis of nonlinear systems using convex optimization , 2005 .

[28]  J. Sandor,et al.  Nonlinear feedback to improve the transient response of a linear servo , 1977 .