Acquisition of the Head-Centered Peri-Personal Spatial Representation Found in VIP Neuron

Both body and visuo-spatial representations are supposed to be gradually acquired during the developmental process as described in cognitive and brain sciences. A typical example is face representation in a neuron (found in the ventral intraparietal (VIP) area) of which the function is not only to code for the location of visual stimuli in the head-centered reference frame, but also to connect visual sensation with tactile sensation. This paper presents a model that enables a robot to acquire such representation. The proprioception of arm posture is utilized as reference data through the ldquohand regard behavior,rdquo that is, the robot moves its hand in front of its face, and the self-organizing map (SOM) and Hebbian learning methods are applied. The simulation results are shown and discussions on the limitation of the current model and future issues are given.

[1]  G. Holmes,et al.  Sensory disturbances from cerebral lesions , 1911 .

[2]  Yasuo Kuniyoshi,et al.  Contingency Perception and Agency Measure in Visuo-Motor Spiking Neural Networks , 2009, IEEE Transactions on Autonomous Mental Development.

[3]  Rj Dolan,et al.  Phantoms in the brain: Probing the mysteries of the human mind , 1998 .

[4]  Aude Billard,et al.  Online Learning of the Body Schema , 2008, Int. J. Humanoid Robotics.

[5]  Y. Cohen,et al.  Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. , 2005, Journal of neurophysiology.

[6]  Masaki Ogino,et al.  Body Image Constructed from Motor and Tactile Images with Visual Information , 2007, Int. J. Humanoid Robotics.

[7]  G. Rizzolatti,et al.  Mirrors in the Brain: How Our Minds Share Actions and Emotions , 2007 .

[8]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[9]  Alexander Stoytchev Toward Video-Guided Robot Behaviors , 2007 .

[10]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[11]  J. Piaget,et al.  LA NAISSANCE DE L'INTELLIGENCE CHEZ L'INFANT , 1939 .

[12]  Minoru Asada,et al.  Cognitive developmental robotics as a new paradigm for the design of humanoid robots , 2001, Robotics Auton. Syst..

[13]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[14]  Yasuo Kuniyoshi,et al.  Adaptive body schema for robotic tool-use , 2006, Adv. Robotics.

[15]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[16]  T. Aflalo,et al.  Possible Origins of the Complex Topographic Organization of Motor Cortex: Reduction of a Multidimensional Space onto a Two-Dimensional Array , 2006, The Journal of Neuroscience.

[17]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[18]  P. R. Dasen Naissance de l'intelligence chez l'enfant baoulé de Côte d'Ivoire , 1978 .

[19]  R. Andersen Encoding of intention and spatial location in the posterior parietal cortex. , 1995, Cerebral cortex.

[20]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[21]  Helena De Preester,et al.  Body image and body schema , 2005 .

[22]  Masaki Ogino,et al.  Cognitive Developmental Robotics: A Survey , 2009, IEEE Transactions on Autonomous Mental Development.

[23]  D. Perrett,et al.  Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey. , 2004, Cerebral cortex.

[24]  G. Stratton Vision without inversion of the retinal image. , 1897 .

[25]  M. Asada,et al.  Visual attention by saliency leads cross-modal body representation , 2008, 2008 7th IEEE International Conference on Development and Learning.

[26]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[27]  吉川 雄一郎 Subjective Robot Imitation by Finding Invariance , 2005 .

[28]  Atsushi Iriki,et al.  Self-images in the video monitor coded by monkey intraparietal neurons , 2001, Neuroscience Research.

[29]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[30]  V. Ramachandran,et al.  Phantoms in the Brain: Probing the Mysteries of the Human Mind , 1998 .

[31]  Mark H Johnson,et al.  Body-centered representations for visually-guided action emerge during early infancy , 1997, Cognition.

[32]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[33]  A. Cowey,et al.  Left visuo-spatial neglect can be worse in far than in near space , 1994, Neuropsychologia.

[34]  David J. Freedman,et al.  Experience-dependent representation of visual categories in parietal cortex , 2006, Nature.

[35]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[36]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[37]  J. Marshall,et al.  Left neglect for near but not far space in man , 1991, Nature.

[38]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[39]  Dylan F. Cooke,et al.  Parieto-frontal interactions, personal space, and defensive behavior , 2006, Neuropsychologia.

[40]  A. Berti,et al.  When Far Becomes Near: Remapping of Space by Tool Use , 2000, Journal of Cognitive Neuroscience.

[41]  Giulio Sandini,et al.  Sensorimotor coordination in a "baby" robot: learning about objects through grasping. , 2007, Progress in brain research.