Properties of artificial neurons that report lightness based on accumulated experience with luminance

The responses of visual neurons in experimental animals have been extensively characterized. To ask whether these responses are consistent with a wholly empirical concept of visual perception, we optimized simple neural networks that responded according to the cumulative frequency of occurrence of local luminance patterns in retinal images. Based on this estimation of accumulated experience, the neuron responses showed classical center-surround receptive fields, luminance gain control and contrast gain control, the key properties of early level visual neurons determined in animal experiments. These results imply that a major purpose of pre-cortical neuronal circuitry is to contend with the inherently uncertain significance of luminance values in natural stimuli.

[1]  Dale Purves,et al.  The statistical structure of natural light patterns determines perceived light intensity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Cherlyn J. Ng,et al.  Network Connections That Evolve to Circumvent the Inverse Optics Problem , 2013, PloS one.

[3]  D. Purves,et al.  Why we see what we do redux : a wholly empirical theory of vision , 2011 .

[4]  W. Martin Usrey,et al.  Origin and Dynamics of Extraclassical Suppression in the Lateral Geniculate Nucleus of the Macaque Monkey , 2008, Neuron.

[5]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[6]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[7]  Peter H. Schiller,et al.  The ON and OFF channels of the visual system , 1992, Trends in Neurosciences.

[8]  H. K. HAltTLIn THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 2004 .

[9]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[10]  Richard F Murray,et al.  Classification images: A review. , 2011, Journal of vision.

[11]  D. Kersten,et al.  Responses to Lightness Variations in Early Human Visual Cortex , 2007, Current Biology.

[12]  S. S. Campbell Responses to light. , 1994, Science.

[13]  B. Knight,et al.  Contrast gain control in the primate retina: P cells are not X-like, some M cells are , 1992, Visual Neuroscience.

[14]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[15]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[16]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Paul R. Martin,et al.  Extraclassical Receptive Field Properties of Parvocellular, Magnocellular, and Koniocellular Cells in the Primate Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[18]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[19]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[20]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[21]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[22]  D. Kersten,et al.  Perceptual grouping-dependent lightness processing in human early visual cortex. , 2010, Journal of vision.

[23]  John H. R. Maunsell,et al.  Functions of the ON and OFF channels of the visual system , 1986, Nature.

[24]  Kareem M. Ahmad,et al.  Cell density ratios in a foveal patch in macaque retina , 2003, Visual Neuroscience.

[25]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[26]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[27]  D. Purves,et al.  Why we see what we do : an empirical theory of vision , 2003 .

[28]  W. Levick,et al.  Lateral geniculate neurons of cat: retinal inputs and physiology. , 1972, Investigative ophthalmology.

[29]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[30]  Dale Purves,et al.  Understanding vision in wholly empirical terms , 2011, Proceedings of the National Academy of Sciences.

[31]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[32]  Geraint Rees,et al.  Monocular signals in human lateral geniculate nucleus reflect the Craik-Cornsweet-O'Brien effect. , 2009, Journal of vision.

[33]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[34]  A. Dean The variability of discharge of simple cells in the cat striate cortex , 2004, Experimental Brain Research.

[35]  D. Purves,et al.  How biological vision succeeds in the physical world , 2014, Proceedings of the National Academy of Sciences.

[36]  Bert Sakmann,et al.  Scotopic and mesopic light adaptation in the cat's retina , 1969, Pflügers Archiv.

[37]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[38]  L. Palmer,et al.  Contrast-dependent spatial summation in the lateral geniculate nucleus and retina of the cat. , 2004, Journal of neurophysiology.

[39]  M. McDonnell,et al.  Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations. , 2008, Physical review letters.

[40]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[41]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[42]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[43]  M. Carandini Receptive fields and suppressive fields in the early visual system , 2004 .

[44]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[45]  Vijay Balasubramanian,et al.  Receptive fields and functional architecture in the retina , 2009, The Journal of physiology.

[46]  Dario L. Ringach,et al.  Reverse correlation in neurophysiology , 2004, Cogn. Sci..

[47]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[48]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[50]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[51]  Norberto M Grzywacz,et al.  Dependence of the retinal Ganglion cell's responses on local textures of natural scenes. , 2011, Journal of vision.

[52]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[53]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[54]  B. Finlay,et al.  Short-term response variability of monkey striate neurons , 1976, Brain Research.

[55]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.