A Fast and Robust Framework for Semiautomatic and Automatic Registration of Photographs to 3D Geometry

We present a simple, fast, and robust complete framework for 2D/3D registration capable to align in a semiautomatic or completely automatic manner a large set of unordered images to a massive point cloud. Our method converts the hard to solve image-to-geometry registration task in a Structure-from-Motion (SfM) plus a 3D/3D alignment problem. We exploit a SfM framework that, starting just from an unordered image collection, computes an estimate of the camera parameters and a sparse 3D geometry deriving from matched image features. We then coarsely register this model to the given 3D geometry by estimating a global scale and absolute orientation using two solutions: a minimal user intervention or a stochastic global point set registration approach. A specialized sparse bundle adjustment (SBA) step, that exploits the correspondence between the sparse geometry and the fine input 3D model, is then used to refine intrinsic and extrinsic parameters of each camera. Output data is suitable for photo blending frameworks to produce seamless colored models. The effectiveness of the method is demonstrated on a series of synthetic and real-world 2D/3D Cultural Heritage datasets.

[1]  Hans-Peter Seidel,et al.  Automated texture registration and stitching for real world models , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[2]  育久 満上,et al.  Bundler: Structure from Motion for Unordered Image Collections , 2011 .

[3]  Roberto Scopigno,et al.  Mapping Highly Detailed Colour Information on Extremely Dense 3D Models: The Case of David's Restoration , 2008, Comput. Graph. Forum.

[4]  Ruggero Pintus,et al.  Improving the digitization of shape and color of 3D artworks in a cluttered environment , 2013, 2013 Digital Heritage International Congress (DigitalHeritage).

[5]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Renato Pajarola,et al.  Fast low-memory streaming MLS reconstruction of point-sampled surfaces , 2009, Graphics Interface.

[7]  Roberto Scopigno,et al.  Fully Automatic Registration of Image Sets on Approximate Geometry , 2012, International Journal of Computer Vision.

[8]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[9]  Lawrence Cayton,et al.  A Nearest Neighbor Data Structure for Graphics Hardware , 2010, ADMS@VLDB.

[10]  Konrad Klein,et al.  Texturing 3D Models of Real World Objects from Multiple Unregistered Photographic Views , 1999, Comput. Graph. Forum.

[11]  Kok-Lim Low,et al.  Automatic registration of color images to 3D geometry , 2009, CGI.

[12]  IkeuchiKatsushi,et al.  The Great Buddha Project , 2007 .

[13]  金谷 健一 Group-theoretical methods in image understanding , 1990 .

[14]  R. Pintus,et al.  A Streaming Framework for Seamless Detailed Photo Blending on Massive Point Clouds , 2011, Eurographics.

[15]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[16]  Ioannis Stamos,et al.  Automatic registration of 2-D with 3-D imagery in urban environments , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[17]  Jan-Michael Frahm,et al.  3D model matching with Viewpoint-Invariant Patches (VIP) , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Richard Szeliski,et al.  Alignment of 3D point clouds to overhead images , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[19]  満上 育久,et al.  第46回 Bundler : Structure from Motion for Unordered Image Collections(私の研究開発ツール) , 2011 .

[20]  Baba C. Vemuri,et al.  A robust algorithm for point set registration using mixture of Gaussians , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[21]  George Wolberg,et al.  Multiview Geometry for Texture Mapping 2D Images Onto 3D Range Data , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  J.-Angelo Beraldin,et al.  A framework for the registration of color images with 3D models , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[23]  Richard Szeliski,et al.  A Multi-stage Linear Approach to Structure from Motion , 2010, ECCV Workshops.

[24]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[25]  Wesley E. Snyder,et al.  Optimization of functions with many minima , 1991, IEEE Trans. Syst. Man Cybern..

[26]  Ioannis Stamos,et al.  Automatic 3D to 2D registration for the photorealistic rendering of urban scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[28]  Katsushi Ikeuchi,et al.  Omnidirectional texturing based on robust 3D registration through Euclidean reconstruction from two spherical images , 2010, Comput. Vis. Image Underst..

[29]  Richard Szeliski,et al.  Using Force Fields Derived from 3D Distance Maps for Inferring the Attitude of a 3D Rigid Object , 1992, ECCV.

[30]  Darius Burschka,et al.  Stochastic global optimization for robust point set registration , 2011, Comput. Vis. Image Underst..

[31]  Manolis I. A. Lourakis,et al.  SBA: A software package for generic sparse bundle adjustment , 2009, TOMS.

[32]  Wenyi Zhao,et al.  Alignment of continuous video onto 3D point clouds , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[34]  Andrea Fusiello,et al.  Structure-and-motion pipeline on a hierarchical cluster tree , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[35]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[36]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[38]  Roberto Scopigno,et al.  Mapping Highly Detailed Colour Information on Extremely Dense 3D Models: The Case of David's Restoration , 2008, Computer graphics forum (Print).

[39]  Carl Olsson,et al.  Branch-and-Bound Methods for Euclidean Registration Problems , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Takeo Kanade,et al.  A Correlation-Based Approach to Robust Point Set Registration , 2004, ECCV.

[41]  Anselmo Lastra,et al.  Automatic image alignment for 3D environment modeling , 2004, Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing.

[42]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[43]  Kazufumi Kaneda,et al.  Softassign and EM-ICP on GPU , 2010, 2010 First International Conference on Networking and Computing.

[44]  John W. Fisher,et al.  Automatic registration of LIDAR and optical images of urban scenes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[46]  Maarten Vergauwen,et al.  Web-based 3D Reconstruction Service , 2006, Machine Vision and Applications.

[47]  Atsushi Nakazawa,et al.  The Great Buddha Project: Digitally Archiving, Restoring, and Analyzing Cultural Heritage Objects , 2007, International Journal of Computer Vision.

[48]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[49]  Y. C. Hecker,et al.  On Geometric Hashing and the Generalized Hough Transform , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[50]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[51]  Xavier Pennec,et al.  Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration , 2002, ECCV.

[52]  George C. Stockman,et al.  Object recognition and localization via pose clustering , 1987, Comput. Vis. Graph. Image Process..

[53]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[54]  Dietmar Saupe,et al.  Stochastic Optimization of Multiple Texture Registration Using Mutual Information , 2007, DAGM-Symposium.

[55]  Pere Pau Vázquez Alcocer,et al.  Practical Volume Rendering in Mobile Devices , 2012, ISVC 2012.

[56]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[57]  Thomas M. Breuel,et al.  Implementation techniques for geometric branch-and-bound matching methods , 2003, Comput. Vis. Image Underst..

[58]  Anselmo Lastra,et al.  Metrics and Optimization Techniques for Registration of Color to Laser Range Scans , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[59]  Hongdong Li,et al.  The 3D-3D Registration Problem Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[60]  Ruggero Pintus,et al.  Fast and Robust Semi-Automatic Registration of Photographs to 3D Geometry , 2011, VAST.

[61]  Haim J. Wolfson,et al.  Geometric hashing: an overview , 1997 .

[62]  Ioannis Stamos,et al.  Integrating Automated Range Registration with Multiview Geometry for the Photorealistic Modeling of Large-Scale Scenes , 2008, International Journal of Computer Vision.

[63]  Ruggero Pintus,et al.  Fast low-memory seamless photo blending on massive point clouds using a streaming framework , 2011, JOCCH.

[64]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[65]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[66]  Paolo Cignoni,et al.  Minimizing user intervention in registering 2D images to 3D models , 2005, The Visual Computer.

[67]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[68]  Pascal Fua,et al.  On benchmarking camera calibration and multi-view stereo for high resolution imagery , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  N. Mitra,et al.  4-points congruent sets for robust pairwise surface registration , 2008, SIGGRAPH 2008.

[70]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[71]  Alberto Jaspe Villanueva,et al.  IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on Large Projection Setups , 2014, JOCCH.

[72]  Andrea Fusiello,et al.  Improving the efficiency of hierarchical structure-and-motion , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.