Vehicle scheduling in public transit and Lagrangean pricing

This paper investigates the solution of the linear programming (LP) relaxation of the multi-commodity flow formulation of the multiple-depot vehicle scheduling problems arising in public mass transit. We develop a column generation technique that makes it possible to solve the huge linear programs that come up there. The technique, which we call Lagrangean pricing, is based on two different Lagrangean relaxations. We describe in detail the basic ingredients of our approach and give computational results for large-scale test data (with up to 70 million variables) from three German public transportation companies. Because of these results, we propose Lagrangean pricing as one of the basic ingredients of an effective method to solve multiple-depot vehicle scheduling problems to proven optimality.

[1]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[2]  A. Löbel Optimale Vehicle Scheduling in Public Transit , 1997 .

[3]  Matteo Fischetti,et al.  A Polyhedral Approach to the Asymmetric Traveling Salesman Problem , 1997 .

[4]  Mauro Dell'Amico,et al.  Annotated Bibliographies in Combinatorial Optimization , 1997 .

[5]  François Soumis,et al.  Decomposition and Column Generation , 1997 .

[6]  George L. Nemhauser,et al.  Airline Crew Scheduling: A New Formulation and Decomposition Algorithm , 1997, Oper. Res..

[7]  Matteo Fischetti,et al.  A branch‐and‐cut algorithm for the resource‐constrained minimum‐weight arborescence problem , 1997 .

[8]  Martin Grötschel,et al.  Optimierung des Fahrzeugumlaufs im Öffentlichen Nahverkehr , 1997 .

[9]  Andreas Löbel,et al.  Lagrangean Relaxations and Subgradient Methods for Multiple-Depot Vehicle Scheduling Problems , 1996 .

[10]  Cynthia Barnhart,et al.  Integer Muticommodity Flow Problems , 1996, IPCO.

[11]  David S. Johnson,et al.  Dimacs series in discrete mathematics and theoretical computer science , 1996 .

[12]  José M. P. Paixão,et al.  Vehicle Scheduling for Public Mass Transit — An Overview , 1995 .

[13]  Jacques Desrosiers,et al.  Chapter 2 Time constrained routing and scheduling , 1995 .

[14]  Philip N. Klein,et al.  Faster Approximation Algorithms for the Unit Capacity Concurrent Flow Problem with Applications to Routing and Finding Sparse Cuts , 1994, SIAM J. Comput..

[15]  Michael Forbes,et al.  An exact algorithm for multiple depot bus scheduling , 1994 .

[16]  Celso C. Ribeiro,et al.  A Column Generation Approach to the Multiple-Depot Vehicle Scheduling Problem , 1991, Oper. Res..

[17]  M. Fischetti,et al.  Heuristic algorithms for the multiple depot vehicle scheduling problem , 1993 .

[18]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[19]  Jacques Desrosiers,et al.  Time Constrained Routing and Scheduling , 1992 .

[20]  Martin Desrochers,et al.  Computer-Aided Transit Scheduling , 1992 .

[21]  Éva Tardos,et al.  Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[22]  Fillia Makedon,et al.  Fast approximation algorithms for multicommodity flow problems , 1991, STOC '91.

[23]  Philip N. Klein,et al.  Approximating Concurrent Flow with Unit Demands and Capacities: An Implementation , 1991, Network Flows And Matching.

[24]  Clifford Stein,et al.  Implementation of a Combinatorial Multicommodity Flow Algorithm , 1991, Network Flows And Matching.

[25]  Matteo Fischetti,et al.  A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem , 2001 .

[26]  Joachim R. Daduna,et al.  COMPUTER-AIDED VEHICLE AND DUTY SCHEDULING USING THE HOT PROGRAMME SYSTEM. FROM THE BOOK COMPUTER-AIDED TRANSIT SCHEDULING , 1988 .

[27]  Alan A. Bertossi,et al.  On some matching problems arising in vehicle scheduling models , 1987, Networks.

[28]  Willi Hock,et al.  Lecture Notes in Economics and Mathematical Systems , 1981 .

[29]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .